45#include "Teuchos_CommandLineProcessor.hpp"
62 "complete",
"tensor",
"total",
"smolyak" };
70 "total",
"lexicographic" };
80 "none",
"2-way",
"6-way" };
85using Teuchos::ArrayView;
86using Teuchos::ArrayRCP;
93 Teuchos::CommandLineProcessor
CLP;
95 "This example generates the sparsity pattern for the block stochastic Galerkin matrix.\n");
97 CLP.setOption(
"dimension", &d,
"Stochastic dimension");
99 CLP.setOption(
"order", &p,
"Polynomial order");
100 double drop = 1.0e-12;
101 CLP.setOption(
"drop", &drop,
"Drop tolerance");
102 bool symmetric =
true;
103 CLP.setOption(
"symmetric",
"asymmetric", &symmetric,
"Use basis polynomials with symmetric PDF");
105 CLP.setOption(
"growth", &growth_type,
109 CLP.setOption(
"product_basis", &prod_basis_type,
112 "Product basis type");
114 CLP.setOption(
"ordering", &ordering_type,
117 "Product basis ordering");
119 CLP.setOption(
"symmetry", &symmetry_type,
122 "Cijk symmetry type");
124 CLP.setOption(
"full",
"linear", &
full,
"Use full or linear expansion");
126 CLP.setOption(
"tile_size", &tile_size,
"Tile size");
127 bool save_3tensor =
false;
128 CLP.setOption(
"save_3tensor",
"no-save_3tensor", &save_3tensor,
129 "Save full 3tensor to file");
130 std::string file_3tensor =
"Cijk.dat";
131 CLP.setOption(
"filename_3tensor", &file_3tensor,
132 "Filename to store full 3-tensor");
138 Array< RCP<const Stokhos::OneDOrthogPolyBasis<int,double> > > bases(d);
139 const double alpha = 1.0;
140 const double beta = symmetric ? 1.0 : 2.0 ;
141 for (
int i=0; i<d; i++) {
143 p, alpha, beta,
true, growth_type));
145 RCP<const Stokhos::ProductBasis<int,double> > basis;
152 else if (prod_basis_type ==
TENSOR) {
162 else if (prod_basis_type ==
TOTAL) {
172 else if (prod_basis_type ==
SMOLYAK) {
177 bases, index_set, drop));
181 bases, index_set, drop));
188 Cijk = basis->computeTripleProductTensor();
190 Cijk = basis->computeLinearTripleProductTensor();
192 int basis_size = basis->size();
193 std::cout <<
"basis size = " << basis_size
194 <<
" num nonzero Cijk entries = " << Cijk->
num_entries()
198 std::ofstream cijk_file;
200 cijk_file.open(file_3tensor.c_str());
201 cijk_file.precision(14);
202 cijk_file.setf(std::ios::scientific);
203 cijk_file <<
"i, j, k, part" << std::endl;
207 Teuchos::ArrayRCP< Stokhos::CijkData<int,double> > coordinate_list =
212 rcb_type rcb(tile_size, 10000, coordinate_list());
213 int num_parts = rcb.get_num_parts();
214 std::cout <<
"num parts = " << num_parts << std::endl;
217 RCP< Array< RCP<rcb_type::Box> > > parts = rcb.get_parts();
218 for (
int i=0; i<num_parts; ++i) {
219 RCP<rcb_type::Box> box = (*parts)[i];
220 std::cout <<
"part " << i <<
" bounding box ="
221 <<
" [ " << box->delta_x <<
", " << box->delta_y <<
", "
222 << box->delta_z <<
" ]" <<
" nnz = "
223 << box->coords.size() << std::endl;
227 ArrayRCP<int> part_ids = rcb.get_part_IDs();
229 Cijk_type::k_iterator k_begin = Cijk->k_begin();
230 Cijk_type::k_iterator k_end = Cijk->k_end();
231 for (Cijk_type::k_iterator k_it=k_begin; k_it!=k_end; ++k_it) {
233 Cijk_type::kj_iterator j_begin = Cijk->j_begin(k_it);
234 Cijk_type::kj_iterator j_end = Cijk->j_end(k_it);
235 for (Cijk_type::kj_iterator j_it = j_begin; j_it != j_end; ++j_it) {
237 Cijk_type::kji_iterator i_begin = Cijk->i_begin(j_it);
238 Cijk_type::kji_iterator i_end = Cijk->i_end(j_it);
239 for (Cijk_type::kji_iterator i_it = i_begin; i_it != i_end; ++i_it) {
244 cijk_file << i <<
", " <<
j <<
", " << k <<
", "
245 << part_ids[idx++] << std::endl;
256 catch (std::exception& e) {
257 std::cout << e.what() << std::endl;
const int num_symmetry_types
int main(int argc, char **argv)
const int num_ordering_types
const char * ordering_type_names[]
const OrderingType ordering_type_values[]
const char * symmetry_type_names[]
const Stokhos::CijkSymmetryType symmetry_type_values[]
const int num_growth_types
const int num_prod_basis_types
const char * prod_basis_type_names[]
const ProductBasisType prod_basis_type_values[]
const char * growth_type_names[]
const Stokhos::GrowthPolicy growth_type_values[]
Multivariate orthogonal polynomial basis generated from a total-order complete-polynomial tensor prod...
A comparison functor implementing a strict weak ordering based lexographic ordering.
Multivariate orthogonal polynomial basis generated from a Smolyak sparse grid.
Data structure storing a sparse 3-tensor C(i,j,k) in a a compressed format.
ordinal_type num_entries() const
Return number of non-zero entries.
Multivariate orthogonal polynomial basis generated from a tensor product of univariate polynomials.
Multivariate orthogonal polynomial basis generated from a total order tensor product of univariate po...
An isotropic total order index set.
A comparison functor implementing a strict weak ordering based total-order ordering,...
Teuchos::ArrayRCP< CijkData< ordinal_type, scalar_type > > build_cijk_coordinate_list(const Sparse3Tensor< ordinal_type, scalar_type > &Cijk, CijkSymmetryType symmetry_type)
GrowthPolicy
Enumerated type for determining Smolyak growth policies.