Open CASCADE Technology 7.7.2
Public Member Functions
Geom2d_OffsetCurve Class Reference

This class implements the basis services for the creation, edition, modification and evaluation of planar offset curve. The offset curve is obtained by offsetting by distance along the normal to a basis curve defined in 2D space. The offset curve in this package can be a self intersecting curve even if the basis curve does not self-intersect. The self intersecting portions are not deleted at the construction time. An offset curve is a curve at constant distance (Offset) from a basis curve and the offset curve takes its parametrization from the basis curve. The Offset curve is in the direction of the normal to the basis curve N. The distance offset may be positive or negative to indicate the preferred side of the curve : . distance offset >0 => the curve is in the direction of N . distance offset >0 => the curve is in the direction of - N On the Offset curve : Value(u) = BasisCurve.Value(U) + (Offset * (T ^ Z)) / ||T ^ Z|| where T is the tangent vector to the basis curve and Z the direction of the normal vector to the plane of the curve, N = T ^ Z defines the offset direction and should not have null length. More...

#include <Geom2d_OffsetCurve.hxx>

Inheritance diagram for Geom2d_OffsetCurve:
Inheritance graph
[legend]

Public Member Functions

 Geom2d_OffsetCurve (const Handle< Geom2d_Curve > &C, const Standard_Real Offset, const Standard_Boolean isNotCheckC0=Standard_False)
 Constructs a curve offset from the basis curve C, where Offset is the distance between the offset curve and the basis curve at any point. A point on the offset curve is built by measuring the offset value along a normal vector at a point on C. This normal vector is obtained by rotating the vector tangential to C at 90 degrees in the anti-trigonometric sense. The side of C on which the offset value is measured is indicated by this normal vector if Offset is positive, or in the inverse sense if Offset is negative. If isNotCheckC0 = TRUE checking if basis curve has C0-continuity is not made. Warnings : In this package the entities are not shared. The OffsetCurve is built with a copy of the curve C. So when C is modified the OffsetCurve is not modified Warning! if isNotCheckC0 = false, ConstructionError raised if the basis curve C is not at least C1. No check is done to know if ||V^Z|| != 0.0 at any point.
 
void Reverse () override
 Changes the direction of parametrization of <me>. As a result:
 
Standard_Real ReversedParameter (const Standard_Real U) const override
 Computes the parameter on the reversed curve for the point of parameter U on this offset curve.
 
void SetBasisCurve (const Handle< Geom2d_Curve > &C, const Standard_Boolean isNotCheckC0=Standard_False)
 Changes this offset curve by assigning C as the basis curve from which it is built. If isNotCheckC0 = TRUE checking if basis curve has C0-continuity is not made. Exceptions if isNotCheckC0 = false, Standard_ConstructionError if the curve C is not at least "C1" continuous.
 
void SetOffsetValue (const Standard_Real D)
 Changes this offset curve by assigning D as the offset value.
 
Handle< Geom2d_CurveBasisCurve () const
 Returns the basis curve of this offset curve. The basis curve can be an offset curve.
 
GeomAbs_Shape Continuity () const override
 Continuity of the Offset curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, G1 : tangency continuity all along the Curve, G2 : curvature continuity all along the Curve, CN : the order of continuity is infinite. Warnings : Returns the continuity of the basis curve - 1. The offset curve must have a unique normal direction defined at any point. Value and derivatives.
 
void D0 (const Standard_Real U, gp_Pnt2d &P) const override
 Warning! this should not be called if the basis curve is not at least C1. Nevertheless if used on portion where the curve is C1, it is OK.
 
void D1 (const Standard_Real U, gp_Pnt2d &P, gp_Vec2d &V1) const override
 Warning! this should not be called if the continuity of the basis curve is not C2. Nevertheless, it's OK to use it on portion where the curve is C2.
 
void D2 (const Standard_Real U, gp_Pnt2d &P, gp_Vec2d &V1, gp_Vec2d &V2) const override
 Warning! This should not be called if the continuity of the basis curve is not C3. Nevertheless, it's OK to use it on portion where the curve is C3.
 
void D3 (const Standard_Real U, gp_Pnt2d &P, gp_Vec2d &V1, gp_Vec2d &V2, gp_Vec2d &V3) const override
 Warning! This should not be called if the continuity of the basis curve is not C4. Nevertheless, it's OK to use it on portion where the curve is C4.
 
gp_Vec2d DN (const Standard_Real U, const Standard_Integer N) const override
 The returned vector gives the value of the derivative for the order of derivation N. Warning! this should not be called raises UndefunedDerivative if the continuity of the basis curve is not CN+1. Nevertheless, it's OK to use it on portion where the curve is CN+1 raises RangeError if N < 1. raises NotImplemented if N > 3. The following functions compute the value and derivatives on the offset curve and returns the derivatives on the basis curve too. The computation of the value and derivatives on the basis curve are used to evaluate the offset curve Warnings : The exception UndefinedValue or UndefinedDerivative is raised if it is not possible to compute a unique offset direction.
 
Standard_Real FirstParameter () const override
 Returns the value of the first parameter of this offset curve. The first parameter corresponds to the start point of the curve. Note: the first and last parameters of this offset curve are also the ones of its basis curve.
 
Standard_Real LastParameter () const override
 Returns the value of the last parameter of this offset curve. The last parameter corresponds to the end point. Note: the first and last parameters of this offset curve are also the ones of its basis curve.
 
Standard_Real Offset () const
 Returns the offset value of this offset curve.
 
Standard_Boolean IsClosed () const override
 Returns True if the distance between the start point and the end point of the curve is lower or equal to Resolution from package gp.
 
Standard_Boolean IsCN (const Standard_Integer N) const override
 Is the order of continuity of the curve N ? Warnings : This method answer True if the continuity of the basis curve is N + 1. We suppose in this class that a normal direction to the basis curve (used to compute the offset curve) is defined at any point on the basis curve. Raised if N < 0.
 
Standard_Boolean IsPeriodic () const override
 Is the parametrization of a curve is periodic ? If the basis curve is a circle or an ellipse the corresponding OffsetCurve is periodic. If the basis curve can't be periodic (for example BezierCurve) the OffsetCurve can't be periodic.
 
virtual Standard_Real Period () const override
 Returns the period of this offset curve, i.e. the period of the basis curve of this offset curve. Exceptions Standard_NoSuchObject if the basis curve is not periodic.
 
void Transform (const gp_Trsf2d &T) override
 Applies the transformation T to this offset curve. Note: the basis curve is also modified.
 
virtual Standard_Real TransformedParameter (const Standard_Real U, const gp_Trsf2d &T) const override
 Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
 
virtual Standard_Real ParametricTransformation (const gp_Trsf2d &T) const override
 Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
 
Handle< Geom2d_GeometryCopy () const override
 Creates a new object, which is a copy of this offset curve.
 
GeomAbs_Shape GetBasisCurveContinuity () const
 Returns continuity of the basis curve.
 
virtual void DumpJson (Standard_OStream &theOStream, Standard_Integer theDepth=-1) const override
 Dumps the content of me into the stream.
 
- Public Member Functions inherited from Geom2d_Curve
virtual void Reverse ()=0
 Changes the direction of parametrization of <me>. The "FirstParameter" and the "LastParameter" are not changed but the orientation of the curve is modified. If the curve is bounded the StartPoint of the initial curve becomes the EndPoint of the reversed curve and the EndPoint of the initial curve becomes the StartPoint of the reversed curve.
 
virtual Standard_Real ReversedParameter (const Standard_Real U) const =0
 Computes the parameter on the reversed curve for the point of parameter U on this curve. Note: The point of parameter U on this curve is identical to the point of parameter ReversedParameter(U) on the reversed curve.
 
virtual Standard_Real TransformedParameter (const Standard_Real U, const gp_Trsf2d &T) const
 Computes the parameter on the curve transformed by T for the point of parameter U on this curve. Note: this function generally returns U but it can be redefined (for example, on a line).
 
virtual Standard_Real ParametricTransformation (const gp_Trsf2d &T) const
 Returns the coefficient required to compute the parametric transformation of this curve when transformation T is applied. This coefficient is the ratio between the parameter of a point on this curve and the parameter of the transformed point on the new curve transformed by T. Note: this function generally returns 1. but it can be redefined (for example, on a line).
 
Handle< Geom2d_CurveReversed () const
 Creates a reversed duplicate Changes the orientation of this curve. The first and last parameters are not changed, but the parametric direction of the curve is reversed. If the curve is bounded:
 
virtual Standard_Real FirstParameter () const =0
 Returns the value of the first parameter. Warnings : It can be RealFirst or RealLast from package Standard if the curve is infinite.
 
virtual Standard_Real LastParameter () const =0
 Value of the last parameter. Warnings : It can be RealFirst or RealLast from package Standard if the curve is infinite.
 
virtual Standard_Boolean IsClosed () const =0
 Returns true if the curve is closed. Examples : Some curves such as circle are always closed, others such as line are never closed (by definition). Some Curves such as OffsetCurve can be closed or not. These curves are considered as closed if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp which is a fixed criterion independent of the application.
 
virtual Standard_Boolean IsPeriodic () const =0
 Returns true if the parameter of the curve is periodic. It is possible only if the curve is closed and if the following relation is satisfied : for each parametric value U the distance between the point P(u) and the point P (u + T) is lower or equal to Resolution from package gp, T is the period and must be a constant. There are three possibilities : . the curve is never periodic by definition (SegmentLine) . the curve is always periodic by definition (Circle) . the curve can be defined as periodic (BSpline). In this case a function SetPeriodic allows you to give the shape of the curve. The general rule for this case is : if a curve can be periodic or not the default periodicity set is non periodic and you have to turn (explicitly) the curve into a periodic curve if you want the curve to be periodic.
 
virtual Standard_Real Period () const
 Returns the period of this curve. raises if the curve is not periodic.
 
virtual GeomAbs_Shape Continuity () const =0
 It is the global continuity of the curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, G1 : tangency continuity all along the Curve, G2 : curvature continuity all along the Curve, CN : the order of continuity is infinite.
 
virtual Standard_Boolean IsCN (const Standard_Integer N) const =0
 Returns true if the degree of continuity of this curve is at least N. Exceptions Standard_RangeError if N is less than 0.
 
virtual void D0 (const Standard_Real U, gp_Pnt2d &P) const =0
 Returns in P the point of parameter U. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
 
virtual void D1 (const Standard_Real U, gp_Pnt2d &P, gp_Vec2d &V1) const =0
 Returns the point P of parameter U and the first derivative V1. Raised if the continuity of the curve is not C1.
 
virtual void D2 (const Standard_Real U, gp_Pnt2d &P, gp_Vec2d &V1, gp_Vec2d &V2) const =0
 Returns the point P of parameter U, the first and second derivatives V1 and V2. Raised if the continuity of the curve is not C2.
 
virtual void D3 (const Standard_Real U, gp_Pnt2d &P, gp_Vec2d &V1, gp_Vec2d &V2, gp_Vec2d &V3) const =0
 Returns the point P of parameter U, the first, the second and the third derivative. Raised if the continuity of the curve is not C3.
 
virtual gp_Vec2d DN (const Standard_Real U, const Standard_Integer N) const =0
 For the point of parameter U of this curve, computes the vector corresponding to the Nth derivative. Exceptions StdFail_UndefinedDerivative if:
 
gp_Pnt2d Value (const Standard_Real U) const
 Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
 
virtual void DumpJson (Standard_OStream &theOStream, Standard_Integer theDepth=-1) const override
 Dumps the content of me into the stream.
 
- Public Member Functions inherited from Geom2d_Geometry
void Mirror (const gp_Pnt2d &P)
 Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry and assigns the result to this geometric object.
 
void Mirror (const gp_Ax2d &A)
 Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
 
void Rotate (const gp_Pnt2d &P, const Standard_Real Ang)
 Rotates a Geometry. P is the center of the rotation. Ang is the angular value of the rotation in radians.
 
void Scale (const gp_Pnt2d &P, const Standard_Real S)
 Scales a Geometry. S is the scaling value.
 
void Translate (const gp_Vec2d &V)
 Translates a Geometry. V is the vector of the translation.
 
void Translate (const gp_Pnt2d &P1, const gp_Pnt2d &P2)
 Translates a Geometry from the point P1 to the point P2.
 
virtual void Transform (const gp_Trsf2d &T)=0
 Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom2d). The following transformations have the same properties as the previous ones but they don't modified the object itself. A copy of the object is returned.
 
Handle< Geom2d_GeometryMirrored (const gp_Pnt2d &P) const
 
Handle< Geom2d_GeometryMirrored (const gp_Ax2d &A) const
 
Handle< Geom2d_GeometryRotated (const gp_Pnt2d &P, const Standard_Real Ang) const
 
Handle< Geom2d_GeometryScaled (const gp_Pnt2d &P, const Standard_Real S) const
 
Handle< Geom2d_GeometryTransformed (const gp_Trsf2d &T) const
 
Handle< Geom2d_GeometryTranslated (const gp_Vec2d &V) const
 
Handle< Geom2d_GeometryTranslated (const gp_Pnt2d &P1, const gp_Pnt2d &P2) const
 
virtual Handle< Geom2d_GeometryCopy () const =0
 
virtual void DumpJson (Standard_OStream &theOStream, Standard_Integer theDepth=-1) const
 Dumps the content of me into the stream.
 
- Public Member Functions inherited from Standard_Transient
 Standard_Transient ()
 Empty constructor.
 
 Standard_Transient (const Standard_Transient &)
 Copy constructor – does nothing.
 
Standard_Transientoperator= (const Standard_Transient &)
 Assignment operator, needed to avoid copying reference counter.
 
virtual ~Standard_Transient ()
 Destructor must be virtual.
 
virtual void Delete () const
 Memory deallocator for transient classes.
 
virtual const opencascade::handle< Standard_Type > & DynamicType () const
 Returns a type descriptor about this object.
 
Standard_Boolean IsInstance (const opencascade::handle< Standard_Type > &theType) const
 Returns a true value if this is an instance of Type.
 
Standard_Boolean IsInstance (const Standard_CString theTypeName) const
 Returns a true value if this is an instance of TypeName.
 
Standard_Boolean IsKind (const opencascade::handle< Standard_Type > &theType) const
 Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
 
Standard_Boolean IsKind (const Standard_CString theTypeName) const
 Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
 
Standard_TransientThis () const
 Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
 
Standard_Integer GetRefCount () const
 Get the reference counter of this object.
 
void IncrementRefCounter () const
 Increments the reference counter of this object.
 
Standard_Integer DecrementRefCounter () const
 Decrements the reference counter of this object; returns the decremented value.
 

Additional Inherited Members

- Public Types inherited from Standard_Transient
typedef void base_type
 Returns a type descriptor about this object.
 
- Static Public Member Functions inherited from Standard_Transient
static const char * get_type_name ()
 Returns a type descriptor about this object.
 
static const opencascade::handle< Standard_Type > & get_type_descriptor ()
 Returns type descriptor of Standard_Transient class.
 

Detailed Description

This class implements the basis services for the creation, edition, modification and evaluation of planar offset curve. The offset curve is obtained by offsetting by distance along the normal to a basis curve defined in 2D space. The offset curve in this package can be a self intersecting curve even if the basis curve does not self-intersect. The self intersecting portions are not deleted at the construction time. An offset curve is a curve at constant distance (Offset) from a basis curve and the offset curve takes its parametrization from the basis curve. The Offset curve is in the direction of the normal to the basis curve N. The distance offset may be positive or negative to indicate the preferred side of the curve : . distance offset >0 => the curve is in the direction of N . distance offset >0 => the curve is in the direction of - N On the Offset curve : Value(u) = BasisCurve.Value(U) + (Offset * (T ^ Z)) / ||T ^ Z|| where T is the tangent vector to the basis curve and Z the direction of the normal vector to the plane of the curve, N = T ^ Z defines the offset direction and should not have null length.

Warnings : In this package we suppose that the continuity of the offset curve is one degree less than the continuity of the basis curve and we don't check that at any point ||T^Z|| != 0.0

So to evaluate the curve it is better to check that the offset curve is well defined at any point because an exception could be raised. The check is not done in this package at the creation of the offset curve because the control needs the use of an algorithm which cannot be implemented in this package. The OffsetCurve is closed if the first point and the last point are the same (The distance between these two points is lower or equal to the Resolution sea package gp) . The OffsetCurve can be closed even if the basis curve is not closed.

Constructor & Destructor Documentation

◆ Geom2d_OffsetCurve()

Geom2d_OffsetCurve::Geom2d_OffsetCurve ( const Handle< Geom2d_Curve > &  C,
const Standard_Real  Offset,
const Standard_Boolean  isNotCheckC0 = Standard_False 
)

Constructs a curve offset from the basis curve C, where Offset is the distance between the offset curve and the basis curve at any point. A point on the offset curve is built by measuring the offset value along a normal vector at a point on C. This normal vector is obtained by rotating the vector tangential to C at 90 degrees in the anti-trigonometric sense. The side of C on which the offset value is measured is indicated by this normal vector if Offset is positive, or in the inverse sense if Offset is negative. If isNotCheckC0 = TRUE checking if basis curve has C0-continuity is not made. Warnings : In this package the entities are not shared. The OffsetCurve is built with a copy of the curve C. So when C is modified the OffsetCurve is not modified Warning! if isNotCheckC0 = false, ConstructionError raised if the basis curve C is not at least C1. No check is done to know if ||V^Z|| != 0.0 at any point.

Member Function Documentation

◆ BasisCurve()

Handle< Geom2d_Curve > Geom2d_OffsetCurve::BasisCurve ( ) const

Returns the basis curve of this offset curve. The basis curve can be an offset curve.

◆ Continuity()

GeomAbs_Shape Geom2d_OffsetCurve::Continuity ( ) const
overridevirtual

Continuity of the Offset curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, G1 : tangency continuity all along the Curve, G2 : curvature continuity all along the Curve, CN : the order of continuity is infinite. Warnings : Returns the continuity of the basis curve - 1. The offset curve must have a unique normal direction defined at any point. Value and derivatives.

Warnings : The exception UndefinedValue or UndefinedDerivative is raised if it is not possible to compute a unique offset direction. If T is the first derivative with not null length and Z the direction normal to the plane of the curve, the relation ||T(U) ^ Z|| != 0 must be satisfied to evaluate the offset curve. No check is done at the creation time and we suppose in this package that the offset curve is well defined.

Implements Geom2d_Curve.

◆ Copy()

Handle< Geom2d_Geometry > Geom2d_OffsetCurve::Copy ( ) const
overridevirtual

Creates a new object, which is a copy of this offset curve.

Implements Geom2d_Geometry.

◆ D0()

void Geom2d_OffsetCurve::D0 ( const Standard_Real  U,
gp_Pnt2d P 
) const
overridevirtual

Warning! this should not be called if the basis curve is not at least C1. Nevertheless if used on portion where the curve is C1, it is OK.

Implements Geom2d_Curve.

◆ D1()

void Geom2d_OffsetCurve::D1 ( const Standard_Real  U,
gp_Pnt2d P,
gp_Vec2d V1 
) const
overridevirtual

Warning! this should not be called if the continuity of the basis curve is not C2. Nevertheless, it's OK to use it on portion where the curve is C2.

Implements Geom2d_Curve.

◆ D2()

void Geom2d_OffsetCurve::D2 ( const Standard_Real  U,
gp_Pnt2d P,
gp_Vec2d V1,
gp_Vec2d V2 
) const
overridevirtual

Warning! This should not be called if the continuity of the basis curve is not C3. Nevertheless, it's OK to use it on portion where the curve is C3.

Implements Geom2d_Curve.

◆ D3()

void Geom2d_OffsetCurve::D3 ( const Standard_Real  U,
gp_Pnt2d P,
gp_Vec2d V1,
gp_Vec2d V2,
gp_Vec2d V3 
) const
overridevirtual

Warning! This should not be called if the continuity of the basis curve is not C4. Nevertheless, it's OK to use it on portion where the curve is C4.

Implements Geom2d_Curve.

◆ DN()

gp_Vec2d Geom2d_OffsetCurve::DN ( const Standard_Real  U,
const Standard_Integer  N 
) const
overridevirtual

The returned vector gives the value of the derivative for the order of derivation N. Warning! this should not be called raises UndefunedDerivative if the continuity of the basis curve is not CN+1. Nevertheless, it's OK to use it on portion where the curve is CN+1 raises RangeError if N < 1. raises NotImplemented if N > 3. The following functions compute the value and derivatives on the offset curve and returns the derivatives on the basis curve too. The computation of the value and derivatives on the basis curve are used to evaluate the offset curve Warnings : The exception UndefinedValue or UndefinedDerivative is raised if it is not possible to compute a unique offset direction.

Implements Geom2d_Curve.

◆ DumpJson()

virtual void Geom2d_OffsetCurve::DumpJson ( Standard_OStream theOStream,
Standard_Integer  theDepth = -1 
) const
overridevirtual

Dumps the content of me into the stream.

Reimplemented from Geom2d_Curve.

◆ FirstParameter()

Standard_Real Geom2d_OffsetCurve::FirstParameter ( ) const
overridevirtual

Returns the value of the first parameter of this offset curve. The first parameter corresponds to the start point of the curve. Note: the first and last parameters of this offset curve are also the ones of its basis curve.

Implements Geom2d_Curve.

◆ GetBasisCurveContinuity()

GeomAbs_Shape Geom2d_OffsetCurve::GetBasisCurveContinuity ( ) const

Returns continuity of the basis curve.

◆ IsClosed()

Standard_Boolean Geom2d_OffsetCurve::IsClosed ( ) const
overridevirtual

Returns True if the distance between the start point and the end point of the curve is lower or equal to Resolution from package gp.

Implements Geom2d_Curve.

◆ IsCN()

Standard_Boolean Geom2d_OffsetCurve::IsCN ( const Standard_Integer  N) const
overridevirtual

Is the order of continuity of the curve N ? Warnings : This method answer True if the continuity of the basis curve is N + 1. We suppose in this class that a normal direction to the basis curve (used to compute the offset curve) is defined at any point on the basis curve. Raised if N < 0.

Implements Geom2d_Curve.

◆ IsPeriodic()

Standard_Boolean Geom2d_OffsetCurve::IsPeriodic ( ) const
overridevirtual

Is the parametrization of a curve is periodic ? If the basis curve is a circle or an ellipse the corresponding OffsetCurve is periodic. If the basis curve can't be periodic (for example BezierCurve) the OffsetCurve can't be periodic.

Implements Geom2d_Curve.

◆ LastParameter()

Standard_Real Geom2d_OffsetCurve::LastParameter ( ) const
overridevirtual

Returns the value of the last parameter of this offset curve. The last parameter corresponds to the end point. Note: the first and last parameters of this offset curve are also the ones of its basis curve.

Implements Geom2d_Curve.

◆ Offset()

Standard_Real Geom2d_OffsetCurve::Offset ( ) const

Returns the offset value of this offset curve.

◆ ParametricTransformation()

virtual Standard_Real Geom2d_OffsetCurve::ParametricTransformation ( const gp_Trsf2d T) const
overridevirtual

Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.

Transformed(T)->Value(U * ParametricTransformation(T))

is the same point as

Value(U).Transformed(T)

This methods calls the basis curve method.

Reimplemented from Geom2d_Curve.

◆ Period()

virtual Standard_Real Geom2d_OffsetCurve::Period ( ) const
overridevirtual

Returns the period of this offset curve, i.e. the period of the basis curve of this offset curve. Exceptions Standard_NoSuchObject if the basis curve is not periodic.

Reimplemented from Geom2d_Curve.

◆ Reverse()

void Geom2d_OffsetCurve::Reverse ( )
overridevirtual

Changes the direction of parametrization of <me>. As a result:

  • the basis curve is reversed,
  • the start point of the initial curve becomes the end point of the reversed curve,
  • the end point of the initial curve becomes the start point of the reversed curve, and
  • the first and last parameters are recomputed.

Implements Geom2d_Curve.

◆ ReversedParameter()

Standard_Real Geom2d_OffsetCurve::ReversedParameter ( const Standard_Real  U) const
overridevirtual

Computes the parameter on the reversed curve for the point of parameter U on this offset curve.

Implements Geom2d_Curve.

◆ SetBasisCurve()

void Geom2d_OffsetCurve::SetBasisCurve ( const Handle< Geom2d_Curve > &  C,
const Standard_Boolean  isNotCheckC0 = Standard_False 
)

Changes this offset curve by assigning C as the basis curve from which it is built. If isNotCheckC0 = TRUE checking if basis curve has C0-continuity is not made. Exceptions if isNotCheckC0 = false, Standard_ConstructionError if the curve C is not at least "C1" continuous.

◆ SetOffsetValue()

void Geom2d_OffsetCurve::SetOffsetValue ( const Standard_Real  D)

Changes this offset curve by assigning D as the offset value.

◆ Transform()

void Geom2d_OffsetCurve::Transform ( const gp_Trsf2d T)
overridevirtual

Applies the transformation T to this offset curve. Note: the basis curve is also modified.

Implements Geom2d_Geometry.

◆ TransformedParameter()

virtual Standard_Real Geom2d_OffsetCurve::TransformedParameter ( const Standard_Real  U,
const gp_Trsf2d T 
) const
overridevirtual

Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.

me->Transformed(T)->Value(me->TransformedParameter(U,T))

is the same point as

me->Value(U).Transformed(T)

This methods calls the basis curve method.

Reimplemented from Geom2d_Curve.


The documentation for this class was generated from the following file: