R Internals

Version 4.3.2 (2023-10-31)

R Core Team

This manual is for R, version 4.3.2 (2023-10-31).
Copyright (© 1999-2023 R Core Team

Permission is granted to make and distribute verbatim copies of this manual provided
the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under
the conditions for verbatim copying, provided that the entire resulting derived work
is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into an-
other language, under the above conditions for modified versions, except that this
permission notice may be stated in a translation approved by the R Core Team.

Table of Contents

1 R Internal Structures..................... 1
1L SE X P ottt 1
111 SEX P T Y PES ..o 1
1.1.2 Rest of header ... 2
11,3 The ‘data’ ..o 4
1.1.4 Allocation CLaSSESttt ettt e ettt 5
1.2 Environments and variable lookup........... .. 5
1.2.1 Search paths 6
1.2.2 NaAMESPDACES . . . vttt ettt 6
1.2.3 Hash table. ... 7
1.3 AT bUbes . oo 7
R oY 01 1>« 1= A PP 8
1.5 Argument evaluation. i e 10
1.5.1 MSSI eSS . o oo v vttt e 10
1.5.2 Dot-dot-dot arguments. e 11
1.6 AUtoprintingot 11
1.7 The write barrier and the garbage collector........... i i 12
1.8 Serialization Formats 12
1.9 Encodings for CHARSXPSt 14
1.10 The CHARSXP cache e 15
1.11 Warnings and €ITOTSttt et ettt et e 16
112 S4 0bJOCtS . o ettt 16
1.12.1 Representation of S4 objects 16
112,20 S ClasSES . vttt e 16
1.12.3 SA methods. ..o 17
1.12.4 Mechanics of S4 dispatch. e 17
1.13 Memory allocators. e 18
1.13.1 Imternals of R_alloc i 19
1.14 Internal use of global and base environments i i 20
1.14.1 Base environmentoouui i e 20
1.14.2 Global environmentttt 20
115 Modules. . ..o 20
116 VASIDIIEY « oottt e e 20
1.16.1 Hiding C entry points.oouuiiiii i e 20
1.16.2 Variables in Windows DLLS. ... i e 21
117 Lazy loading.ot e 21
2 .Internal vs .Primitive........... 23
2.1 Special Primitives.ttt e 25
2.2 Special internals 25
2.3 Prototypes for primitives.o e 26
2.4 Adding a primitive. 26
3 Internationalization in the R sources........................ 28
3.1 R COode . oo 28
3.2 Main C Code. ... 28

3.3 Windows-GUI-specific code 28

ii

3.4 macOS GUI 29
3.0 UpPdating . .o oovt ittt e 29

4 Structure of an Installed Package............................ 30
4.1 Metadata. . ..o 30
A2 HelD . o e 31

B Files. ... 32
6 Graphics...... 33
6.1 Graphics Deviceso e 34
6.1.1 Device structurest 34
6.1.2 Device capabilities 36
6.1.3 Handling text.t e 37
6.1.4 COnVENTIONS . . v\ttt ettt e e 39

6.1.5 MOde . .. 40

6.1.6 Graphics eVents. e 40
6.1.7 SPECIIC dEVICES . .\ttt et et e e e 40
6.1.7.1 Xll() ... 40

6.1.7.2 WIRAOWS() . o oottt 41

0.2 COloUTS . . oottt 42
6.3 Base graphics. 43
6.3.1 Arguments and ParamieterS.ttt e 44

6.4 Grid graphics 44
7 GUI consoles 45
Tl R DD et 45
8 T00lS e 47
9 Rcodingstandards.................. 60
10 Testing Rcode..... 62
11 Useof TeX dialects......... 63
12 Current and future directions 64
12,1 LONE VECTOTS . . . vttt et et e 64
12.2 0 B4-DIb by PeS - o 64
12,3 Large matriCes.ttt e 65
Function and variable index.......... 66

Concept index. i 68

1 R Internal Structures

This chapter is the beginnings of documentation about R internal structures. It is written for
the core team and others studying the code in the src/main directory.

It is a work-in-progress and should be checked against the current version of the source code.
Versions for R 2.x.y contain historical comments about when features were introduced: this
version is for the 3.x.y series.

1.1 SEXPs

What R users think of as wvariables or objects are symbols which are bound to a value. The
value can be thought of as either a SEXP (a pointer), or the structure it points to, a SEXPREC
(and there are alternative forms used for vectors, namely VECSXP pointing to VECTOR_SEXPREC
structures). So the basic building blocks of R objects are often called nodes, meaning SEXPRECs
or VECTOR_SEXPRECs.

Note that the internal structure of the SEXPREC is not made available to R Extensions: rather
SEXP is an opaque pointer, and the internals can only be accessed by the functions provided.

Both types of node structure have as their first three fields a 64-bit sxpinfo header and then
three pointers (to the attributes and the previous and next node in a doubly-linked list), and
then some further fields. On a 32-bit platform a node' occupies 32 bytes: on a 64-bit platform
typically 56 bytes (depending on alignment constraints).

The first five bits of the sxpinfo header specify one of up to 32 SEXPTYPEs.

1.1.1 SEXPTYPEs

Currently SEXPTYPEs (0:10 and 13:25 are in use. Values 11 and 12 were used for internal factors
and ordered factors and have since been withdrawn. Note that the SEXPTYPE numbers are stored
in saved objects and that the ordering of the types is used, so the gap cannot easily be reused.

no SEXPTYPE Description

0 NILSXP NULL

1 SYMSXP symbols

2 LISTSXP pairlists

3 CLOSXP closures

4 ENVSXP environments

5 PROMSXP promises

6 LANGSXP language objects

7 SPECIALSXP special functions

8 BUILTINSXP builtin functions

9 CHARSXP internal character strings
10 LGLSXP logical vectors

13 INTSXP integer vectors

14 REALSXP numeric vectors

15 CPLXSXP complex vectors

16 STRSXP character vectors
17 DOTSXP dot-dot-dot object
18 ANYSXP make “any” args work
19 VECSXP list (generic vector)
20 EXPRSXP expression vector
21 BCODESXP byte code

22 EXTPTRSXP external pointer

1

strictly, a SEXPREC node; VECTOR_SEXPREC nodes are slightly smaller but followed by data in the node.

Chapter 1: R Internal Structures 2

23 WEAKREFSXP weak reference
24 RAWSXP raw vector
25 S4SXP S4 classes not of simple type

Many of these will be familiar from R level: the atomic vector types are LGLSXP, INTSXP,
REALSXP, CPLXSP, STRSXP and RAWSXP. Lists are VECSXP and names (also known as symbols) are
SYMSXP. Pairlists (LISTSXP, the name going back to the origins of R as a Scheme-like language)
are rarely seen at R level, but are for example used for argument lists. Character vectors are
effectively lists all of whose elements are CHARSXP, a type that is rarely visible at R level.

Language objects (LANGSXP) are calls (including formulae and so on). Internally they are
pairlists with first element a reference? to the function to be called with remaining elements the
actual arguments for the call (and with the tags if present giving the specified argument names).
Although this is not enforced, many places in the code assume that the pairlist is of length one
or more, often without checking.

Expressions are of type EXPRSXP: they are a vector of (usually language) objects most often
seen as the result of parse().

The functions are of types CLOSXP, SPECTALSXP and BUILTINSXP: where SEXPTYPEs are stored
in an integer these are sometimes lumped into a pseudo-type FUNSXP with code 99. Functions
defined via function are of type CLOSXP and have formals, body and environment.

The SEXPTYPE S4SXP is for S4 objects which do not consist solely of a simple type such as
an atomic vector or function.

1.1.2 Rest of header

Note that the size and structure of the header changed in R 3.5.0: see earlier editions of this
manual for the previous layout.

The sxpinfo header is defined as a 64-bit C structure by
#define NAMED_BITS 16
struct sxpinfo_struct {

SEXPTYPE type
unsigned int scalar:

; /% discussed above */

/* is this a numeric vector of length 17
unsigned int obj /* is this an object with a class attribute? */
unsigned int alt /* is this an ALTREP object? */
unsigned int gp : 16; /* general purpose, see below */
unsigned int mark ; /* mark object as ‘in use’ in GC */
unsigned int debug :
unsigned int trace :
unsigned int spare : ; /* debug once and with reference counting */
unsigned int gcgen : ; /% generation for GC */
unsigned int gccls : 3; /* class of node for GC */
unsigned int named : NAMED_BITS; /* used to control copying */
unsigned int extra : 32 - NAMED_BITS;

}; /% Tot: 64 */

The debug bit is used for closures and environments. For closures it is set by debug() and
unset by undebug(), and indicates that evaluations of the function should be run under the
browser. For environments it indicates whether the browsing is in single-step mode.

-

===,

[o = SN =

The trace bit is used for functions for trace() and for other objects when tracing duplica-
tions (see tracemem).

The spare bit is used for closures to mark them for one-time debugging.

2 a pointer to a function or a symbol to look up the function by name, or a language object to be evaluated to
give a function.

Chapter 1: R Internal Structures 3

The named field is set and accessed by the SET_NAMED and NAMED macros, and take values O,
1 and 2, or possibly higher if NAMEDMAX is set to a higher value. R has a ‘call by value’ illusion,
so an assignment like

b <- a
[The NAMED mechanism has been replaced by reference counting.]

appears to make a copy of a and refer to it as b. However, if neither a nor b are subsequently
altered there is no need to copy. What really happens is that a new symbol b is bound to the
same value as a and the named field on the value object is set (in this case to 2). When an object
is about to be altered, the named field is consulted. A value of 2 or more means that the object
must be duplicated before being changed. (Note that this does not say that it is necessary to
duplicate, only that it should be duplicated whether necessary or not.) A value of 0 means that
it is known that no other SEXP shares data with this object, and so it may safely be altered. A
value of 1 is used for situations like

dim(a) <- c(7, 2)
where in principle two copies of a exist for the duration of the computation as (in principle)

a <- “dim<-"(a, c(7, 2))
but for no longer, and so some primitive functions can be optimized to avoid a copy in this case.
[This mechanism is scheduled to be replaced in R 4.0.0.]

The gp bits are by definition ‘general purpose’. We label these from 0 to 15. Bits 0-5 and
bits 14-15 have been used as described below (mainly from detective work on the sources).

The bits can be accessed and set by the LEVELS and SETLEVELS macros, which names appear
to date back to the internal factor and ordered types and are now used in only a few places in
the code. The gp field is serialized /unserialized for the SEXPTYPEs other than NILSXP, SYMSXP
and ENVSXP.

Bits 14 and 15 of gp are used for ‘fancy bindings’. Bit 14 is used to lock a binding or an
environment, and bit 15 is used to indicate an active binding. (For the definition of an ‘active
binding’ see the header comments in file src/main/envir.c.) Bit 15 is used for an environment
to indicate if it participates in the global cache.

The macros ARGUSED and SET_ARGUSED are used when matching actual and formal function
arguments, and take the values 0, 1 and 2.

The macros MISSING and SET_MISSING are used for pairlists of arguments. Four bits are
reserved, but only two are used (and exactly what for is not explained). It seems that bit 0 is
used by matchArgs_NR to mark missingness on the returned argument list, and bit 1 is used to
mark the use of a default value for an argument copied to the evaluation frame of a closure.

Bit 0 is used by macros DDVAL and SET_DDVAL. This indicates that a SYMSXP is one of the
symbols ..n which are implicitly created when ... is processed, and so indicates that it may
need to be looked up in a DOTSXP.

Bit 0 is used for PRSEEN, a flag to indicate if a promise has already been seen during the
evaluation of the promise (and so to avoid recursive loops).

Bit 0 is used for HASHASH, on the PRINTNAME of the TAG of the frame of an environment. (This
bit is not serialized for CHARSXP objects.)

Bits 0 and 1 are used for weak references (to indicate ‘ready to finalize’, ‘finalize on exit’).
Bit 0 is used by the condition handling system (on a VECSXP) to indicate a calling handler.
Bit 4 is turned on to mark S4 objects.

Bits 1, 2, 3, 5 and 6 are used for a CHARSXP to denote its encoding. Bit 1 indicates that
the CHARSXP should be treated as a set of bytes, not necessarily representing a character in any
known encoding. Bits 2, 3 and 6 are used to indicate that it is known to be in Latin-1, UTF-8
or ASCII respectively.

Chapter 1: R Internal Structures 4

Bit 5 for a CHARSXP indicates that it is hashed by its address, that is NA_STRING or is in the
CHARSXP cache (this is not serialized). Only exceptionally is a CHARSXP not hashed, and this
should never happen in end-user code.

1.1.3 The ‘data’

A SEXPREC is a C structure containing the 64-bit header as described above, three pointers (to
the attributes, previous and next node) and the node data, a union

union {
struct primsxp_struct primsxp;
struct symsxp_struct symsxp,
struct listsxp_struct listsxp;
struct envsxp_struct envsxp;
struct closxp_struct closxp;
struct promsxp_struct promsxp;
} u;
All of these alternatives apart from the first (an int) are three pointers, so the union occupies
three words.

The vector types are RAWSXP, CHARSXP, LGLSXP, INTSXP, REALSXP, CPLXSXP, STRSXP, VECSXP,
EXPRSXP and WEAKREFSXP. Remember that such types are a VECTOR_SEXPREC, which again
consists of the header and the same three pointers, but followed by two integers giving the
length and ‘true length™® of the vector, and then followed by the data (aligned as required: on
most 32-bit systems with a 24-byte VECTOR_SEXPREC node the data can follow immediately after
the node). The data are a block of memory of the appropriate length to store ‘true length’
elements (rounded up to a multiple of 8 bytes, with the 8-byte blocks being the ‘Vcells’ referred
in the documentation for gc(Q)).

The ‘data’ for the various types are given in the table below. A lot of this is interpretation,
i.e. the types are not checked.

NILSXP There is only one object of type NILSXP, R_NilValue, with no data.

SYMSXP Pointers to three nodes, the name, value and internal, accessed by PRINTNAME (a
CHARSXP), SYMVALUE and INTERNAL. (If the symbol’s value is a . Internal function,
the last is a pointer to the appropriate SEXPREC.) Many symbols have SYMVALUE
R_UnboundValue.

LISTSXP Pointers to the CAR, CDR (usually a LISTSXP or NULL) and TAG (a SYMSXP or
NULL).

CLOSXP Pointers to the formals (a pairlist), the body and the environment.

ENVSXP Pointers to the frame, enclosing environment and hash table (NULL or a VECSXP). A
frame is a tagged pairlist with tag the symbol and CAR the bound value.

PROMSXP Pointers to the value, expression and environment (in which to evaluate the expres-
sion). Once an promise has been evaluated, the environment is set to NULL.

LANGSXP A special type of LISTSXP used for function calls. (The CAR references the function
(perhaps via a symbol or language object), and the CDR the argument list with tags
for named arguments.) R-level documentation references to ‘expressions’ / ‘language
objects’ are mainly LANGSXPs, but can be symbols (SYMSXPs) or expression vectors
(EXPRSXPS)

3 The only current use is for hash tables of environments (VECSXPs), where length is the size of the table and
truelength is the number of primary slots in use, for the reference hash tables in serialization (VECSXPs), and
for ‘growable’ vectors (atomic vectors, VECSXPs and EXPRSXPs) which are created by slightly over-committing
when enlarging a vector during subassignment, so that some number of the following enlargements during
subassignment can be performed in place), where truelength is the number of slots in use.

Chapter 1: R Internal Structures 5

SPECIALSXP
BUILTINSXP
An integer giving the offset into the table of primitives/.Internals.

CHARSXP length, truelength followed by a block of bytes (allowing for the nul terminator).

LGLSXP
INTSXP length, truelength followed by a block of C ints (which are 32 bits on all R
platforms).

REALSXP length, truelength followed by a block of C doubles.

CPLXSXP length, truelength followed by a block of C99 double complexs.

STRSXP length, truelength followed by a block of pointers (SEXPs pointing to CHARSXPS).
DOTSXP A special type of LISTSXP for the value bound to a . . . symbol: a pairlist of promises.
ANYSXP This is used as a place holder for any type: there are no actual objects of this type.

VECSXP
EXPRSXP length, truelength followed by a block of pointers. These are internally identical
(and identical to STRSXP) but differ in the interpretations placed on the elements.

BCODESXP For the ‘byte-code’ objects generated by the compiler.

EXTPTRSXP
Has three pointers, to the pointer, the protection value (an R object which if alive
protects this object) and a tag (a SYMSXP?).

WEAKREFSXP
A WEAKREFSXP is a special VECSXP of length 4, with elements ‘key’, ‘value’,
‘finalizer’ and ‘next’. The ‘key’ is NULL, an environment or an external pointer,
and the ‘finalizer’ is a function or NULL.

RAWSXP length, truelength followed by a block of bytes.

S4SXP two unused pointers and a tag.

1.1.4 Allocation classes

As we have seen, the field gccls in the header is three bits to label up to 8 classes of nodes.
Non-vector nodes are of class 0, and ‘small’ vector nodes are of classes 1 to 5, with a class for
custom allocator vector nodes 6 and ‘large’ vector nodes being of class 7. The ‘small’ vector
nodes are able to store vector data of up to 8, 16, 32, 64 and 128 bytes: larger vectors are
malloc-ed individually whereas the ‘small’ nodes are allocated from pages of about 2000 bytes.
Vector nodes allocated using custom allocators (via allocVector3) are not counted in the gc
memory usage statistics since their memory semantics is not under R’s control and may be
non-standard (e.g., memory could be partially shared across nodes).

1.2 Environments and variable lookup

What users think of as ‘variables’ are symbols which are bound to objects in ‘environments’.
The word ‘environment’ is used ambiguously in R to mean either the frame of an ENVSXP (a
pairlist of symbol-value pairs) or an ENVSXP, a frame plus an enclosure.

There are additional places that ‘variables’ can be looked up, called ‘user databases’ in com-
ments in the code. These seem undocumented in the R sources, but apparently refer to the
RObjectTable package formerly available at https://www.omegahat.net/RObjectTables/.

The base environment is special. There is an ENVSXP environment with enclosure the empty
environment R_EmptyEnv, but the frame of that environment is not used. Rather its bindings

https://www.omegahat.net/RObjectTables/

Chapter 1: R Internal Structures 6

are part of the global symbol table, being those symbols in the global symbol table whose values
are not R_UnboundValue. When R is started the internal functions are installed (by C code)
in the symbol table, with primitive functions having values and .Internal functions having
what would be their values in the field accessed by the INTERNAL macro. Then .Platform and
.Machine are computed and the base package is loaded into the base environment followed by
the system profile.

The frames of environments (and the symbol table) are normally hashed for faster access
(including insertion and deletion).

By default R maintains a (hashed) global cache of ‘variables’ (that is symbols and their
bindings) which have been found, and this refers only to environments which have been marked
to participate, which consists of the global environment (aka the user workspace), the base
environment plus environments* which have been attached. When an environment is either
attached or detached, the names of its symbols are flushed from the cache. The cache is used
whenever searching for variables from the global environment (possibly as part of a recursive
search).

1.2.1 Search paths

S has the notion of a ‘search path’: the lookup for a ‘variable’ leads (possibly through a series of
frames) to the ‘session frame’ the ‘working directory’ and then along the search path. The search
path is a series of databases (as returned by search()) which contain the system functions (but
not necessarily at the end of the path, as by default the equivalent of packages are added at the
end).

R has a variant on the S model. There is a search path (also returned by search()) which
consists of the global environment (aka user workspace) followed by environments which have
been attached and finally the base environment. Note that unlike S it is not possible to attach
environments before the workspace nor after the base environment.

However, the notion of variable lookup is more general in R, hence the plural in the title
of this subsection. Since environments have enclosures, from any environment there is a search
path found by looking in the frame, then the frame of its enclosure and so on. Since loops
are not allowed, this process will eventually terminate: it can terminate at either the base
environment or the empty environment. (It can be conceptually simpler to think of the search
always terminating at the empty environment, but with an optimization to stop at the base
environment.) So the ‘search path’ describes the chain of environments which is traversed once
the search reaches the global environment.

1.2.2 Namespaces

Namespaces are environments associated with packages (and once again the base package is spe-
cial and will be considered separately). A package pkg defines two environments namespace: pkg
and package: pkg: it is package: pkg that can be attached and form part of the search path.

The objects defined by the R code in the package are symbols with bindings in the
namespace: pkg environment. The package:pkg environment is populated by selected sym-
bols from the namespace: pkg environment (the exports). The enclosure of this environment is
an environment populated with the explicit imports from other namespaces, and the enclosure of
that environment is the base namespace. (So the illusion of the imports being in the namespace
environment is created via the environment tree.) The enclosure of the base namespace is the
global environment, so the search from a package namespace goes via the (explicit and implicit)
imports to the standard ‘search path’.

4 Remember that attaching a list or a saved image actually creates and populates an environment and attaches
that.

Chapter 1: R Internal Structures 7

The base namespace environment R_BaseNamespace is another ENVSXP that is special-cased.
It is effectively the same thing as the base environment R_BaseEnv ezcept that its enclosure is
the global environment rather than the empty environment: the internal code diverts lookups
in its frame to the global symbol table.

1.2.3 Hash table

Environments in R usually have a hash table, and nowadays that is the default in new.env().
It is stored as a VECSXP where length is used for the allocated size of the table and truelength
is the number of primary slots in use—the pointer to the VECSXP is part of the header of a SEXP
of type ENVSXP, and this points to R_NilValue if the environment is not hashed.

For the pros and cons of hashing, see a basic text on Computer Science.

The code to implement hashed environments is in src/main/envir.c. Unless set otherwise
(e.g. by the size argument of new.env()) the initial table size is 29. The table will be resized
by a factor of 1.2 once the load factor (the proportion of primary slots in use) reaches 85%.

The hash chains are stored as pairlist elements of the VECSXP: items are inserted at the front
of the pairlist. Hashing is principally designed for fast searching of environments, which are
from time to time added to but rarely deleted from, so items are not actually deleted but have
their value set to R_UnboundValue.

1.3 Attributes

As we have seen, every SEXPREC has a pointer to the attributes of the node (default R_NilValue).
The attributes can be accessed/set by the macros/functions ATTRIB and SET_ATTRIB, but such
direct access is normally only used to check if the attributes are NULL or to reset them. Otherwise
access goes through the functions getAttrib and setAttrib which impose restrictions on the
attributes. One thing to watch is that if you copy attributes from one object to another you
may (un)set the "class" attribute and so need to copy the object and S4 bits as well. There is
a macro/function DUPLICATE_ATTRIB to automate this.

Note that the ‘attributes’ of a CHARSXP are used as part of the management of the CHARSXP
cache: of course CHARSXP’s are not user-visible but C-level code might look at their attributes.

The code assumes that the attributes of a node are either R_NilValue or a pairlist of non-
zero length (and this is checked by SET_ATTRIB). The attributes are named (via tags on the
pairlist). The replacement function attributes<- ensures that "dim" precedes "dimnames" in
the pairlist. Attribute "dim" is one of several that is treated specially: the values are checked,
and any "names" and "dimnames" attributes are removed. Similarly, you cannot set "dimnames"
without having set "dim", and the value assigned must be a list of the correct length and with
elements of the correct lengths (and all zero-length elements are replaced by NULL).

The other attributes which are given special treatment are "names", "class", "tsp",
"comment" and "row.names". For pairlist-like objects the names are not stored as an attribute
but (as symbols) as the tags: however the R interface makes them look like conventional at-
tributes, and for one-dimensional arrays they are stored as the first element of the "dimnames"
attribute. The C code ensures that the "tsp" attribute is an REALSXP, the frequency is positive
and the implied length agrees with the number of rows of the object being assigned to. Classes
and comments are restricted to character vectors, and assigning a zero-length comment or class
removes the attribute. Setting or removing a "class" attribute sets the object bit appropriately.
Integer row names are converted to and from the internal compact representation.

Care needs to be taken when adding attributes to objects of the types with non-standard
copying semantics. There is only one object of type NILSXP, R_NilValue, and that should
never have attributes (and this is enforced in installAttrib). For environments, external
pointers and weak references, the attributes should be relevant to all uses of the object: it is for

Chapter 1: R Internal Structures 8

example reasonable to have a name for an environment, and also a "path" attribute for those
environments populated from R code in a package.

When should attributes be preserved under operations on an object? Becker, Chambers &
Wilks (1988, pp. 144-6) give some guidance. Scalar functions (those which operate element-
by-element on a vector and whose output is similar to the input) should preserve attributes
(except perhaps class, and if they do preserve class they need to preserve the OBJECT and S4
bits). Binary operations normally call

copyMostAttrib to copy most attributes from the longer argument (and if they are of the
same length from both, preferring the values on the first). Here ‘most’ means all except the
names, dim and dimnames which are set appropriately by the code for the operator.

Subsetting (other than by an empty index) generally drops all attributes except names, dim
and dimnames which are reset as appropriate. On the other hand, subassignment generally
preserves such attributes even if the length is changed. Coercion drops all attributes. For
example:

> x <- structure(1:8, names=letters[1:8], comm="a comment")
> x[]

abcdefgh

12345678

attr(,"comm")

[1] "a comment"

> x[1:3]
abc
123

> x[3] <- 3
> X

abcdefgh
123456738
attr(,"comm")

[1] "a comment"
> x[9] <- 9

> x
abcdefgh
1234567829
attr(,"comm")

[1] "a comment"

1.4 Contexts

Contexts are the internal mechanism used to keep track of where a computation has got to

(and from where), so that control-flow constructs can work and reasonable information can be

produced on error conditions (such as wvia traceback), and otherwise (the sys.xxx functions).
Execution contexts are a stack of C structs:

typedef struct RCNTXT {
struct RCNTXT *nextcontext; /* The next context up the chain */

int callflag; /* The context ‘type’ */

JMP_BUF cjmpbuf; /* C stack and register information */
int cstacktop; /* Top of the pointer protection stack */
int evaldepth; /* Evaluation depth at inception */
SEXP promargs; /* Promises supplied to closure */

SEXP callfun; /* The closure called */

SEXP sysparent; /* Environment the closure was called from */

Chapter 1: R Internal Structures 9

SEXP call; /* The call that effected this context */
SEXP cloenv; /* The environment */

SEXP conexit; /* Interpreted on.exit code */

void (*cend) (void *); /* C on.exit thunk */

void *cenddata; /* Data for C on.exit thunk */

char *vmax; /* Top of the R_alloc stack */

int intsusp; /* Interrupts are suspended */

SEXP handlerstack; /* Condition handler stack */

SEXP restartstack; /* Stack of available restarts */

struct RPRSTACK *prstack; /* Stack of pending promises */
} RCNTXT, *context;

plus additional fields for the byte-code compiler. The ‘types’ are from

enum {
CTXT_TOPLEVEL = 0, /* toplevel context */
CTXT_NEXT 1, /* target for next */
CTXT_BREAK 2, /* target for break */
CTXT_LOOP 3, /* break or next target */
CTXT_FUNCTION = 4, /* function closure */
CTXT_CCODE 8, /x other functions that need error cleanup */

CTXT_RETURN = 12, /* return() from a closure */
CTXT_BROWSER = 16, /* return target on exit from browser */
CTXT_GENERIC = 20, /* rather, running an S3 method */
CTXT_RESTART = 32, /* a call to restart was made from a closure */
CTXT_BUILTIN = 64 /* builtin internal function */

};

where the CTXT_FUNCTION bit is on wherever function closures are involved.

Contexts are created by a call to begincontext and ended by a call to endcontext: code can
search up the stack for a particular type of context via findcontext (and jump there) or jump
to a specific context via R_JumpToContext. R_ToplevelContext is the ‘idle’ state (normally the
command prompt), and R_GlobalContext is the top of the stack.

Note that whilst calls to closures set a context, internal functions never do and primitive
builtins only set it when profiling or when they are interfaces to foreign functions.

The byte-code compiler generates a map of instructions to source references and expressions
at compile time, which allows to produce information on error conditions. As an optimization,
the byte-code interpreter then does not set a context in some cases, such as in simple loops or
when inlining simple builtins or wrappers for internal functions.

Dispatching from a S3 generic (via UseMethod or its internal equivalent) or calling
NextMethod sets the context type to CTXT_GENERIC. This is used to set the sysparent of the
method call to that of the generic, so the method appears to have been called in place of the
generic rather than from the generic.

The R sys.frame and sys.call functions work by counting calls to closures (type CTXT_
FUNCTION) from either end of the context stack.

Note that the sysparent element of the structure is not the same thing as sys.parent ().
FElement sysparent is primarily used in managing changes of the function being evaluated, i.e.
by Recall and method dispatch.

CTXT_CCODE contexts are currently used in cat(), load(), scan() and write.table() (to
close the connection on error), by PROTECT, serialization (to recover from errors, e.g. free buffers)
and within the error handling code (to raise the C stack limit and reset some variables).

Chapter 1: R Internal Structures 10

1.5 Argument evaluation

As we have seen, functions in R come in three types, closures (SEXPTYPE CLOSXP), specials
(SPECIALSXP) and builtins (BUILTINSXP). In this section we consider when (and if) the actual
arguments of function calls are evaluated. The rules are different for the internal (special/builtin)
and R-level functions (closures).

For a call to a closure, the actual and formal arguments are matched and a matched call
(another LANGSXP) is constructed. This process first replaces the actual argument list by a list
of promises to the values supplied. It then constructs a new environment which contains the
names of the formal parameters matched to actual or default values: all the matched values
are promises, the defaults as promises to be evaluated in the environment just created. That
environment is then used for the evaluation of the body of the function, and promises will be
forced (and hence actual or default arguments evaluated) when they are encountered.

(Evaluating a promise sets NAMED = NAMEDMAX on its value, so if the argument was a symbol
its binding is regarded as having multiple references during the evaluation of the closure call.)
[The NAMED mechanism has been replaced by reference counting,]

If the closure is an S3 generic (that is, contains a call to UseMethod) the evaluation process
is the same until the UseMethod call is encountered. At that point the argument on which to do
dispatch (normally the first) will be evaluated if it has not been already. If a method has been
found which is a closure, a new evaluation environment is created for it containing the matched
arguments of the method plus any new variables defined so far during the evaluation of the
body of the generic. (Note that this means changes to the values of the formal arguments in the
body of the generic are discarded when calling the method, but actual argument promises which
have been forced retain the values found when they were forced. On the other hand, missing
arguments have values which are promises to use the default supplied by the method and not
by the generic.) If the method found is a primitive it is called with the matched argument list
of promises (possibly already forced) used for the generic.

The essential difference® between special and builtin functions is that the arguments of spe-
cials are not evaluated before the C code is called, and those of builtins are. Note that being a
special/builtin is separate from being primitive or .Internal: quote is a special primitive, + is
a builtin primitive, cbind is a special .Internal and grep is a builtin .Internal.

Many of the internal functions are internal generics, which for specials means that they do
not evaluate their arguments on call, but the C code starts with a call to DispatchOrEval. The
latter evaluates the first argument, and looks for a method based on its class. (If S4 dispatch is
on, S4 methods are looked for first, even for S3 classes.) If it finds a method, it dispatches to
that method with a call based on promises to evaluate the remaining arguments. If no method
is found, the remaining arguments are evaluated before return to the internal generic.

The other way that internal functions can be generic is to be group generic. Most such
functions are builtins (so immediately evaluate all their arguments), and all contain a call to
the C function DispatchGeneric. There are some peculiarities over the number of arguments
for the "Math" group generic, with some members allowing only one argument, some having
two (with a default for the second) and trunc allows one or more but the default method only
accepts one.

1.5.1 Missingness

Actual arguments to (non-internal) R functions can be fewer than are required to match the
formal arguments of the function. Having unmatched formal arguments will not matter if the
argument is never used (by lazy evaluation), but when the argument is evaluated, either its

5 There is currently one other difference: when profiling builtin functions are counted as function calls but
specials are not.

Chapter 1: R Internal Structures 11

default value is evaluated (within the evaluation environment of the function) or an error is
thrown with a message along the lines of

argument "foobar" is missing, with no default

Internally missingness is handled by two mechanisms. The object R_MissingArg is used to
indicate that a formal argument has no (default) value. When matching the actual arguments
to the formal arguments, a new argument list is constructed from the formals all of whose values
are R_MissingArg with the first MISSING bit set. Then whenever a formal argument is matched
to an actual argument, the corresponding member of the new argument list has its value set to
that of the matched actual argument, and if that is not R_MissingArg the missing bit is unset.

This new argument list is used to form the evaluation frame for the function, and if named
arguments are subsequently given a new value (before they are evaluated) the missing bit is
cleared.

Missingness of arguments can be interrogated via the missing() function. An argument is
clearly missing if its missing bit is set or if the value is R_MissingArg. However, missingness
can be passed on from function to function, for using a formal argument as an actual argument
in a function call does not count as evaluation. So missing() has to examine the value (a
promise) of a non-yet-evaluated formal argument to see if it might be missing, which might
involve investigating a promise and so on

Special primitives also need to handle missing arguments, and in some case (e.g. log) that
is why they are special and not builtin. This is usually done by testing if an argument’s value
is R_MissingArg.

1.5.2 Dot-dot-dot arguments

Dot-dot-dot arguments are convenient when writing functions, but complicate the internal code
for argument evaluation.

The formals of a function with a ... argument represent that as a single argument like any
other argument, with tag the symbol R_DotsSymbol. When the actual arguments are matched
to the formals, the value of the ... argument is of SEXPTYPE DOTSXP, a pairlist of promises (as
used for matched arguments) but distinguished by the SEXPTYPE.

Recall that the evaluation frame for a function initially contains the name=value pairs from
the matched call, and hence this will be true for ... as well. The value of ... is a (special)
pairlist whose elements are referred to by the special symbols ..1, ..2, ... which have the
DDVAL bit set: when one of these is encountered it is looked up (via ddfindVar) in the value of
the ... symbol in the evaluation frame.

Values of arguments matched to a ... argument can be missing.

Special primitives may need to handle ... arguments: see for example the internal code of
switch in file src/main/builtin.c.

1.6 Autoprinting

Whether the returned value of a top-level R expression is printed is controlled by the global
boolean variable R_Visible. This is set (to true or false) on entry to all primitive and internal
functions based on the eval column of the table in file src/main/names.c: the appropriate
setting can be extracted by the macro PRIMPRINT.

The R primitive function invisible makes use of this mechanism: it just sets R_Visible =
FALSE before entry and returns its argument.

For most functions the intention will be that the setting of R_Visible when they are en-
tered is the setting used when they return, but there need to be exceptions. The R functions
identify, options, system and writeBin determine whether the result should be visible from
the arguments or user action. Other functions themselves dispatch functions which may change

Chapter 1: R Internal Structures 12

the visibility flag: examples® are .Internal, do.call, eval, withVisible, if, NextMethod,
Recall, recordGraphics, standardGeneric, switch and UseMethod.

‘Special’ primitive and internal functions evaluate their arguments internally after R_Visible
has been set, and evaluation of the arguments (e.g. an assignment as in PR#9263) can change
the value of the flag.

The R_Visible flag can also get altered during the evaluation of a function, with comments
in the code about warning, writeChar and graphics functions calling GText (PR#7397). (Since
the C-level function eval sets R_Visible, this could apply to any function calling it. Since it
is called when evaluating promises, even object lookup can change R_Visible.) Internal and
primitive functions force the documented setting of R_Visible on return, unless the C code is
allowed to change it (the exceptions above are indicated by PRIMPRINT having value 2).

The actual autoprinting is done by PrintValueEnv in file print.c. If the object to be printed
has the S4 bit set and S4 methods dispatch is on, show is called to print the object. Otherwise, if
the object bit is set (so the object has a "class" attribute), print is called to dispatch methods:
for objects without a class the internal code of print.default is called.

1.7 The write barrier and the garbage collector

R has long had a generational garbage collector, and bit gcgen in the sxpinfo header is used
in the implementation of this. This is used in conjunction with the mark bit to identify two
previous generations.

There are three levels of collections. Level 0 collects only the youngest generation, level
1 collects the two youngest generations and level 2 collects all generations. After 20 level-0
collections the next collection is at level 1, and after 5 level-1 collections at level 2. Further, if
a level-n collection fails to provide 20% free space (for each of nodes and the vector heap), the
next collection will be at level n+1. (The R-level function gc () performs a level-2 collection.)

A generational collector needs to efficiently ‘age’ the objects, especially list-like objects (in-
cluding STRSXPs). This is done by ensuring that the elements of a list are regarded as at least
as old as the list when they are assigned. This is handled by the functions SET_VECTOR_ELT and
SET_STRING_ELT, which is why they are functions and not macros. Ensuring the integrity of
such operations is termed the write barrier and is done by making the SEXP opaque and only
providing access via functions (which cannot be used as lvalues in assignments in C).

All code in R extensions is behind the write barrier. R extensions cannot directly access the
internals of the SEXPRECs. Base code can access internals if ‘USE_RINTERNALS’ is defined. This
is normally defined in Defn.h when R is compiled. To enable a check on the way that the access
is used, R can be compiled with flag --enable-strict-barrier which ensures that header
Defn.h does not define ‘USE_RINTERNALS’ and hence that SEXP is opaque in most of R itself.
(There are some necessary exceptions: foremost in file memory.c where the accessor functions
are defined and also in file size.c which needs access to the sizes of the internal structures.)

For background papers see https://homepage.stat.uiowa.edu/ luke/R/barrier.html
and https://homepage.stat.uiowa.edu/ luke/R/gengcnotes.html.

1.8 Serialization Formats

Serialized versions of R objects are used by load/save and also at a slightly lower level by
saveRDS/readRDS (and their earlier ‘internal’ dot-name versions) and serialize/unserialize.
These differ in what they serialize to (a file, a connection, a raw vector) and whether they are
intended to serialize a single object or a collection of objects (typically the workspace). save
writes a header at the beginning of the file (a single LF-terminated line) which the lower-level
versions do not.

6 the other current example is left brace, which is implemented as a primitive.

https://homepage.stat.uiowa.edu/~luke/R/barrier.html
https://homepage.stat.uiowa.edu/~luke/R/gengcnotes.html

Chapter 1: R Internal Structures 13

save and saveRDS allow various forms of compression, and gzip compression is the default
(except for ASCII saves). Compression is applied to the whole file stream, including the headers,
so serialized files can be uncompressed or re-compressed by external programs. Both load and
readRDS can read gzip, bzip2 and xz forms of compression when reading from a file, and gzip
compression when reading from a connection.

R has used the same serialization format called ‘version 2’ from R 1.4.0 in December 2001
until R 3.5.3 in March 2019. It has been expanded in back-compatible ways since its inception,
for example to support additional SEXPTYPEs. Earlier formats are still supported via load and
save but such formats are not described here. The current default serialization format is called
‘version 3’, and has been introduced in R 3.5.0.

save works by writing a single-line header (typically RDX2\n for a binary save: the only
other current value is RDA2\n for save(files=TRUE)), then creating a tagged pairlist of the
objects to be saved and serializing that single object. load reads the header line, unserializes a
single object (a pairlist or a vector list) and assigns the elements of the object in the specified
environment. The header line serves two purposes in R: it identifies the serialization format so
load can switch to the appropriate reader code, and the newline \n allows the detection of files
which have been subjected to a non-binary transfer which re-mapped line endings. It can also
be thought of as a ‘magic number’ in the sense used by the file program (although R save files
are not yet by default known to that program).

Serialization in R needs to take into account that objects may contain references to environ-
ments, which then have enclosing environments and so on. (Environments recognized as package
or name space environments are saved by name.) There are ‘reference objects’ which are not
duplicated on copy and should remain shared on unserialization. These are weak references,
external pointers and environments other than those associated with packages, namespaces and
the global environment. These are handled via a hash table, and references after the first are
written out as a reference marker indexed by the table entry.

Version-2 serialization first writes a header indicating the format (normally ‘X\n’ for an XDR
format binary save, but ‘A\n’, ASCII, and ‘B\n’, native word-order binary, can also occur) and
then three integers giving the version of the format and two R versions (packed by the R_Version
macro from Rversion.h). (Unserialization interprets the two versions as the version of R which
wrote the file followed by the minimal version of R needed to read the format.) Serialization
then writes out the object recursively using function WriteItem in file src/main/serialize.c.

Some objects are written as if they were SEXPTYPEs: such pseudo-SEXPTYPEs cover R_
NilValue, R_EmptyEnv, R_BaseEnv, R_GlobalEnv, R_UnboundValue, R_MissingArg and R_
BaseNamespace.

For all SEXPTYPEs except NILSXP, SYMSXP and ENVSXP serialization starts with an integer with
the SEXPTYPE in bits 0:77 followed by the object bit, two bits indicating if there are any attributes
and if there is a tag (for the pairlist types), an unused bit and then the gp field® in bits 12:27.
Pairlist-like objects write their attributes (if any), tag (if any), CAR and then CDR (using tail
recursion): other objects write their attributes after themselves. Atomic vector objects write
their length followed by the data: generic vector-list objects write their length followed by a call
to WritelItem for each element. The code for CHARSXPs special-cases NA_STRING and writes it
as length -1 with no data. Lengths no more than 2731 - 1 are written in that way and larger
lengths (which only occur on 64-bit systems) as -1 followed by the upper and lower 32-bits as
integers (regarded as unsigned).

Environments are treated in several ways: as we have seen, some are written as specific
pseudo-SEXPTYPEs. Package and namespace environments are written with pseudo-SEXPTYPEs

7 only bits 0:4 are currently used for SEXPTYPEs but values 241:255 are used for pseudo-SEXPTYPEs.
8 Currently the only relevant bits are 0:1, 4, 14:15.

Chapter 1: R Internal Structures 14

followed by the name. ‘Normal’ environments are written out as ENVSXPs with an integer indi-
cating if the environment is locked followed by the enclosure, frame, ‘tag’ (the hash table) and
attributes.

In the ‘XDR’ format integers and doubles are written in bigendian order: however the format
is not fully XDR (as defined in RFC 1832) as byte quantities (such as the contents of CHARSXP
and RAWSXP types) are written as-is and not padded to a multiple of four bytes.

The ‘ASCII’ format writes 7-bit characters. Integers are formatted with %d (except that NA_
integer_ is written as NA), doubles formatted with %.16g (plus NA, Inf and -Inf) and bytes
with %02x. Strings are written using standard escapes (e.g. \t and \013) for non-printing and
non-ASCII bytes.

Version-3 serialization extends version-2 by support for custom serialization of ALTREP frame-
work objects. It also stores the current native encoding at serialization time, so that unflagged
strings can be converted if unserialized in R running under different native encoding.

1.9 Encodings for CHARSXPs
Character data in R are stored in the sexptype CHARSXP.

There is support for encodings other than that of the current locale, in particular UTF-8
and the multi-byte encodings used on Windows for CJK languages. A limited means to indicate
the encoding of a CHARSXP is wia two of the ‘general purpose’ bits which are used to declare
the encoding to be either Latin-1 or UTF-8. (Note that it is possible for a character vector to
contain elements in different encodings.) Both printing and plotting notice the declaration and
convert the string to the current locale (possibly using <xx> to display in hexadecimal bytes that
are not valid in the current locale). Many (but not all) of the character manipulation functions
will either preserve the declaration or re-encode the character string.

Strings that refer to the OS such as file names need to be passed through a wide-character
interface on some OSes (e.g. Windows).

When are character strings declared to be of known encoding? One way is to do so directly via
Encoding. The parser declares the encoding if this is known, either via the encoding argument
to parse or from the locale within which parsing is being done at the R command line. (Other
ways are recorded on the help page for Encoding.)

It is not necessary to declare the encoding of ASCII strings as they will work in any locale.
ASCII strings should never have a marked encoding, as any encoding will be ignored when
entering such strings into the CHARSXP cache.

The rationale behind considering only UTF-8 and Latin-1 was that most systems are capable
of producing UTF-8 strings and this is the nearest we have to a universal format. For those that
do not (for example those lacking a powerful enough iconv), it is likely that they work in Latin-
1, the old R assumption. Then the parser can return a UTF-8-encoded string if it encounters
a ‘\uxxxx’ escape for a Unicode point that cannot be represented in the current charset. (This
needs MBCS support, and in the past was only enabled® on Windows.) Now this is enabled
for all platforms, and a ‘\uxxxx’ or ‘\Uxxxxxxxx’ escape ensures that the parsed string will be
marked as UTF-8.

Most of the character manipulation functions now preserve UTF-8 encodings: there
are some notes as to which at the top of file src/main/character.c and in file
src/library/base/man/Encoding.Rd.

Graphics devices are offered the possibility of handing UTF-8-encoded strings without re-
encoding to the native character set, by setting hasTextUTF8 to be ‘TRUE’ and supplying func-
tions textUTF8 and strWidthUTF8 that expect UTF-8-encoded inputs. Normally the symbol

9 See define USE_UTF8_IF_POSSIBLE in old versions of file src/main/gram.c.

Chapter 1: R Internal Structures 15

font is encoded in Adobe Symbol encoding, but that can be re-encoded to UTF-8 by setting
wantSymbolUTF8 to ‘TRUE’. The Windows’ port of cairographics has a rather peculiar assump-
tion: it wants the symbol font to be encoded in UTF-8 as if it were encoded in Latin-1 rather
than Adobe Symbol: this is selected by wantSymbolUTF8 = NA_LOGICAL.

Windows with MSVCRT as the C runtime has no UTF-8 locales, but rather expects to work
with UCS-2'° strings. R (being written in standard C) would not work internally with UCS-2
without extensive changes. The Rgui console!! uses UCS-2 internally, but communicates with
the R engine in the native encoding. To allow UTF-8 strings to be printed in UTF-8 in Rgui . exe,
an escape convention is used (see header file rgui _UTF8.h) by cat, print and autoprinting.

‘Unicode’ (UCS-2LE) files are common in the Windows world, and readLines and scan will
read them into UTF-8 strings on Windows if the encoding is declared explicitly on an unopened
connection passed to those functions.

Windows have multiple notions of the current locale encoding, one is in the C runtime (C
library) and another is the active code page (system locale). The active code page is used
when calling non-UTF-16 variants of Windows API functions (earlier referred to as ANSI calls),
either directly or indirectly via POSIX wrappers inside MinGW-w64, from R, R packages and
libraries they link to. While R has handled many cases by calling directly the UTF-16 variants
of the Windows API, it still may sometimes use the non-UTF-16 ones, and external libraries
also primarily developed for POSIX systems typically do that. Therefore, for R to reliably work
with (non-ASCII) strings on Windows, both the C locale encoding and the active code page on
Windows must be the same, and by default they are.

The Windows UCRT C runtime supports UTF-8 locales. Historically, the active code page
was a system-wide setting, changing which required a reboot, and UTF-8 was not supported.
Later a "BETA: Use Unicode UTF-8 for worldwide language support" feature has been added to
set the active code page to UTF-8, but this still required a reboot and impacted all applications,
many of which would not work correctly with that unexpected setting, so it could not be used
in practice.

Windows since Windows 10 (version 1903), Windows Server 2022 (LTSC), and Windows
Server 1903 (semi-annual channel) allow setting the active code page to UTF-8 in the application
manifest. This changes the active code page only for the given application and does so together
with changing also the UCRT C locale to UTF-8. R 4.2 for Windows uses this feature to get
UTF-8 as the native encoding on Windows. To make that possible, R had to switch to UCRT,
which in turn required creation of Rtools42.

Older versions of Windows still rely on the previous encoding support where the native
encoding cannot be UTF-8. R 4.2 requires UCRT to work, but UCRT can be installed on
Windows since Vista SP2 and Windows Server 2008 SP2. It is shipped with Windows since
Windows 10 and Windows Server 2016.

1.10 The CHARSXP cache

There is a global cache for CHARSXPs created by mkChar — the cache ensures that most CHARSXPs
with the same contents share storage (‘contents’ including any declared encoding). Not all
CHARSXPs are part of the cache — notably ‘NA_STRING’ is not. CHARSXPs reloaded from the save
formats of R prior to 0.99.0 are not cached (since the code used is frozen and very few examples
still exist).

The cache records the encoding of the string as well as the bytes: all requests to create a
CHARSXP should be via a call to mkCharLenCE. Any encoding given in mkCharLenCE call will be
ignored if the string’s bytes are all ASCII characters.

10 or UTF-16 if support for surrogates is enabled in the OS, which it used not to be when encoding support was

added to R.
' but not the GraphApp toolkit.

Chapter 1: R Internal Structures 16

1.11 Warnings and errors

Each of warning and stop have two C-level equivalents, warning, warningcall, error and
errorcall. The relationship between the pairs is similar: warning tries to fathom out a suitable
call, and then calls warningcall with that call as the first argument if it succeeds, and with
call = R_NilValue if it does not. When warningcall is called, it includes the deparsed call in
its printout unless call = R_NilValue.

warning and error look at the context stack. If the topmost context is not of type CTXT_
BUILTIN, it is used to provide the call, otherwise the next context provides the call. This means
that when these functions are called from a primitive or .Internal, the imputed call will not be
to primitive/.Internal but to the function calling the primitive/.Internal . This is exactly
what one wants for a .Internal, as this will give the call to the closure wrapper. (Further,
for a .Internal, the call is the argument to .Internal, and so may not correspond to any R
function.) However, it is unlikely to be what is needed for a primitive.

The upshot is that warningcall and errorcall should normally be used for code called
from a primitive, and warning and error should be used for code called from a .Internal (and
necessarily from .Call, .C and so on, where the call is not passed down). However, there are
two complications. One is that code might be called from either a primitive or a .Internal,
in which case probably warningcall is more appropriate. The other involves replacement
functions, where the call was once of the form

> length(x) <- y ~ x
Error in "length<-"(*tmp*", value = y ~ x) : invalid value

which is unpalatable to the end user. For replacement functions there will be a suitable context
at the top of the stack, so warning should be used. (The results for .Internal replacement
functions such as substr<- are not ideal.)

1.12 S4 objects

[This section is currently a preliminary draft and should not be taken as definitive. The descrip-
tion assumes that R_NO_METHODS_TABLES has not been set.]

1.12.1 Representation of S4 objects

S4 objects can be of any SEXPTYPE. They are either an object of a simple type (such as an atomic
vector or function) with S4 class information or of type S4SXP. In all cases, the ‘S4 bit’ (bit 4
of the ‘general purpose’ field) is set, and can be tested by the macro/function IS_S4_0BJECT.

S4 objects are created via new()'? and thence via the C function R_do_new_object. This
duplicates the prototype of the class, adds a class attribute and sets the S4 bit. All S4 class
attributes should be character vectors of length one with an attribute giving (as a character
string) the name of the package (or .GlobalEnv) containing the class definition. Since S4
objects have a class attribute, the OBJECT bit is set.

It is currently unclear what should happen if the class attribute is removed from an S4 object,
or if this should be allowed.

1.12.2 S4 classes

S4 classes are stored as R objects in the environment in which they are created, with names
C__classname: as such they are not listed by default by 1s.

The objects are S4 objects of class "classRepresentation" which is defined in the methods
package.

12 This can also create non-S4 objects, as in new("integer").

Chapter 1: R Internal Structures 17

Since these are just objects, they are subject to the normal scoping rules and can be im-
ported and exported from namespaces like other objects. The directives importClassesFrom
and exportClasses are merely convenient ways to refer to class objects without needing to know
their internal ‘metaname’ (although exportClasses does a little sanity checking via isClass).

1.12.3 S4 methods

Details of the methods are stored in environments (typically hidden in the respective namespace)
with a non-syntactic name of the form .__T__generic:package containing objects of class
MethodDefinition for all methods defined in the current environment for the named generic
derived from a specific package (which might be .GlobalEnv). This is sometimes referred to as
a ‘methods table’.

For example,

length(nM <- asNamespace("Matrix")) # 941 for Matrix 1.2-6
length(meth <- grep("~[.J__T__", names(nM), value=TRUE))# 107 generics with methods
length(meth.Ops <- nM$~.__T__Ops:base’) # 71 methods for the 'Ops' (group)generic

head(sort(names(meth.0Ops))) ## "abIndex#abIndex" ... "ANY#ddiMatrix" "ANY#ldiMatrix"

During an R session there is an environment associated with each non-primitive generic
containing objects .Al11MTable, .Generic, .Methods, .MTable, .SigArgs and .SigLength.
.MTable and A11MTable are merged methods tables containing all the methods defined directly
and via inheritance respectively. .Methods is a merged methods list.

Exporting methods from a namespace is more complicated than exporting a class. Note
first that you do not export a method, but rather the directive exportMethods will export all
the methods defined in the namespace for a specified generic: the code also adds to the list
of generics any that are exported directly. For generics which are listed via exportMethods or
exported themselves, the corresponding environment is exported and so will appear (as hidden
object) in the package environment.

Methods for primitives which are internally S4 generic (see below) are always exported,
whether mentioned in the NAMESPACE file or not.

Methods can be imported either via the directive importMethodsFrom or via importing a
namespace by import. Also, if a generic is imported via importFrom, its methods are also im-
ported. In all cases the generic will be imported if it is in the namespace, so importMethodsFrom
is most appropriate for methods defined on generics in other packages. Since methods for a
generic could be imported from several different packages, the methods tables are merged.

When a package is attached methods:::cacheMetaData is called to update the internal
tables: only the visible methods will be cached.

1.12.4 Mechanics of S4 dispatch

This subsection does not discuss how S4 methods are chosen: see https://developer.
r-project.org/howMethodsWork. pdf.

For all but primitive functions, setting a method on an existing function that is not itself
S4 generic creates a new object in the current environment which is a call to standardGeneric
with the old definition as the default method. Such S4 generics can also be created via a call to
setGeneric!?® and are standard closures in the R language, with environment the environment
within which they are created. With the advent of namespaces this is somewhat problematic:
if myfn was previously in a package with a name space there will be two functions called myfn
on the search paths, and which will be called depends on which search path is in use. This is
starkest for functions in the base namespace, where the original will be found ahead of the newly
created function from any other package.

13 although this is not recommended as it is less future-proof.

https://developer.r-project.org/howMethodsWork.pdf
https://developer.r-project.org/howMethodsWork.pdf

Chapter 1: R Internal Structures 18

Primitive functions are treated quite differently, for efficiency reasons: this results in different
semantics. setGeneric is disallowed for primitive functions. The methods namespace contains
a list .BasicFunsList named by primitive functions: the entries are either FALSE or a standard
S4 generic showing the effective definition. When setMethod (or setReplaceMethod) is called,
it either fails (if the list entry is FALSE) or a method is set on the effective generic given in the
list.

Actual dispatch of S4 methods for almost all primitives piggy-backs on the S3 dispatch
mechanism, so S4 methods can only be dispatched for primitives which are internally S3 generic.
When a primitive that is internally S3 generic is called with a first argument which is an S4
object and S4 dispatch is on (that is, the methods namespace is loaded), DispatchOrEval
calls R_possible_dispatch (defined in file src/main/objects.c). (Members of the S3 group
generics, which includes all the generic operators, are treated slightly differently: the first two
arguments are checked and DispatchGroup is called.) R_possible_dispatch first checks an
internal table to see if any S4 methods are set for that generic (and S4 dispatch is currently
enabled for that generic), and if so proceeds to S4 dispatch using methods stored in another
internal table. All primitives are in the base namespace, and this mechanism means that S4
methods can be set for (some) primitives and will always be used, in contrast to setting methods
on non-primitives.

The exception is %*%, which is S4 generic but not S3 generic as its C code contains a direct
call to R_possible_dispatch.

The primitive as.double is special, as as.numeric and as.real are copies of it. The methods
package code partly refers to generics by name and partly by function, and maps as.double
and as.real to as.numeric (since that is the name used by packages exporting methods for
it).

Some elements of the language are implemented as primitives, for example }. This includes
the subset and subassignment ‘functions’ and they are S4 generic, again piggybacking on S3
dispatch.

.BasicFunsList is generated when methods is installed, by computing all primitives, initially
disallowing methods on all and then setting generics for members of .GenericArgsEnv, the S4
group generics and a short exceptions list in file BasicFunsList.R: this currently contains the
subsetting and subassignment operators and an override for c.

1.13 Memory allocators

R’s memory allocation is almost all done via routines in file src/main/memory.c.

The rest of R should where possible make use of the allocators made available by file
src/main/memory. c, which are also the methods recommended in Section “Memory allocation”
in Writing R Extensions

for use in R packages, namely the use of R_alloc, R_Calloc, R_Realloc and R_Free. Memory
allocated by R_alloc is freed by the garbage collector once the ‘watermark’ has been reset by
calling

vmaxset. This is done automatically by the wrapper code calling primitives and .Internal
functions (and also by the wrapper code to .Call and .External), but

vmaxget and vmaxset can be used to reset the watermark from within internal code if the
memory is only required for a short time.

All of the methods of memory allocation mentioned so far are relatively expensive. All R
platforms support alloca, and in almost all cases'* this is managed by the compiler, allocates
memory on the C stack and is very efficient.

M put apparently not on Windows.

Chapter 1: R Internal Structures 19

There are two disadvantages in using alloca. First, it is fragile and care is needed to
avoid writing (or even reading) outside the bounds of the allocation block returned. Second, it
increases the danger of overflowing the C stack. It is suggested that it is only used for smallish
allocations (up to tens of thousands of bytes), and that

R_CheckStack();

is called immediately after the allocation (as R’s stack checking mechanism will warn far
enough from the stack limit to allow for modest use of alloca). (do_makeunique in file
src/main/unique.c provides an example of both points.)

There is an alternative check,
R_CheckStack2(size_t extra);
to be called immediately before trying an allocation of extra bytes.

An alternative strategy has been used for various functions which require intermediate blocks
of storage of varying but usually small size, and this has been consolidated into the routines in
the header file src/main/RBufferUtils.h. This uses a structure which contains a buffer, the
current size and the default size. A call to

R_AllocStringBuffer(size_t blen, R_StringBuffer *buf);

sets buf->data to a memory area of at least blen+1 bytes. At least the default size is used,
which means that for small allocations the same buffer can be reused. A call to

R_FreeStringBufferL releases memory if more than the default has been allocated whereas
a call to R_FreeStringBuffer frees any memory allocated.

The R_StringBuffer structure needs to be initialized, for example by
static R_StringBuffer ex_buff = {NULL, O, MAXELTSIZE};

which uses a default size of MAXELTSIZE = 8192 bytes. Most current uses have a static R_
StringBuffer structure, which allows the (default-sized) buffer to be shared between calls to
e.g. grep and even between functions: this will need to be changed if R ever allows concurrent
evaluation threads. So the idiom is

static R_StringBuffer ex_buff = {NULL, O, MAXELTSIZE};

char *buf;
for(i = 0; i < n; i++) {
compute len
buf = R_AllocStringBuffer(len, &ex_buff);
use buf
}
/* free allocation if larger than the default, but leave
default allocated for future use */
R_FreeStringBufferL (&ex_buff) ;

1.13.1 Internals of R_alloc

The memory used by R_alloc is allocated as R vectors, of type RAWSXP. Thus the allocation
is in units of 8 bytes, and is rounded up. A request for zero bytes currently returns NULL (but
this should not be relied on). For historical reasons, in all other cases 1 byte is added before
rounding up so the allocation is always 1-8 bytes more than was asked for: again this should
not be relied on.

The vectors allocated are protected via the setting of R_VStack, as the garbage collector
marks everything that can be reached from that location. When a vector is R_allocated, its
ATTRIB pointer is set to the current R_VStack, and R_VStack is set to the latest allocation.
Thus R_VStack is a single-linked chain of the vectors currently allocated via R_alloc. Function
vmaxset resets the location R_VStack, and should be to a value that has previously be obtained

Chapter 1: R Internal Structures 20

via vmaxget: allocations after the value was obtained will no longer be protected and hence
available for garbage collection.

1.14 Internal use of global and base environments

This section notes known use by the system of these environments: the intention is to minimize
or eliminate such uses.

1.14.1 Base environment

The graphics devices system maintains two variables .Device and .Devices in the base envi-
ronment: both are always set. The variable .Devices gives a list of character vectors of the
names of open devices, and .Device is the element corresponding to the currently active device.
The null device will always be open.

There appears to be a variable .0Options, a pairlist giving the current options settings. But
in fact this is just a symbol with a value assigned, and so shows up as a base variable.

Similarly, the evaluator creates a symbol .Last.value which appears as a variable in the
base environment.

Errors can give rise to objects .Traceback and last.warning in the base environment.

1.14.2 Global environment
The seed for the random number generator is stored in object .Random.seed in the global
environment.

Some error handlers may give rise to objects in the global environment: for example
dump . frames by default produces last.dump.

The windows () device makes use of a variable .SavedPlots to store display lists of saved
plots for later display. This is regarded as a variable created by the user.

1.15 Modules

R makes use of a number of shared objects/DLLs stored in the modules directory. These are
parts of the code which have been chosen to be loaded ‘on demand’ rather than linked as dynamic
libraries or incorporated into the main executable/dynamic library.

For the remaining modules the motivation has been the amount of (often optional) code they
will bring in via libraries to which they are linked.

internet The internal HTTP and FTP clients and socket support, which link to system-
specific support libraries. This may load libcurl and on Windows will load
wininet.dll and ws2_32.d11.

lapack The code which makes use of the LAPACK library, and is linked to 1ibRlapack or
an external LAPACK library.

X11 (Unix-alikes only.) The X11(), jpeg(), png() and tiff() devices. These are
optional, and links to some or all of the X11, pango, cairo, jpeg, libpng and
libtiff libraries.

1.16 Visibility

1.16.1 Hiding C entry points

We make use of the visibility mechanisms discussed in Section “Controlling visibility” in Writing
R Extensions, C entry points not needed outside the main R executable/dynamic library (and
in particular in no package nor module) should be prefixed by attribute_hidden.

Chapter 1: R Internal Structures 21

Minimizing the visibility of symbols in the R dynamic library will speed up linking to it (which
packages will do) and reduce the possibility of linking to the wrong entry points of the same
name. In addition, on some platforms reducing the number of entry points allows more efficient
versions of PIC to be used: somewhat over half the entry points are hidden. A convenient way
to hide variables (as distinct from functions) is to declare them extern0O in header file Defn.h.

The visibility mechanism used is only available with some compilers and platforms, and in
particular not on Windows, where an alternative mechanism is used. Entry points will not be
made available in R.d11 if they are listed in the file src/gnuwin32/Rd11.hide.

Entries in that file start with a space and must be strictly in alphabetic order in the C
locale (use sort on the file to ensure this if you change it). It is possible to hide Fortran
as well as C entry points via this file: the former are lower-cased and have an underline as
suffix, and the suffixed name should be included in the file. Some entry points exist only on
Windows or need to be visible only on Windows, and some notes on these are provided in file
src/gnuwin32/Maintainters.notes.

Because of the advantages of reducing the number of visible entry points, they should be
declared attribute_hidden where possible. Note that this only has an effect on a shared-
R-library build, and so care is needed not to hide entry points that are legitimately used by
packages. So it is best if the decision on visibility is made when a new entry point is created,
including the decision if it should be included in header file Rinternals.h. A list of the visible
entry points on shared-R-library build on a reasonably standard Unix-alike can be made by
something like

nm -g 1libR.so | grep ' [BCDT] ' | cut -b20-

1.16.2 Variables in Windows DLLs

Windows is unique in that it conventionally treats importing variables differently from functions:
variables that are imported from a DLL need to be specified by a prefix (often ‘_imp_’) when
being linked to (‘imported’) but not when being linked from (‘exported’). The details depend
on the compiler system, and have changed for MinGW during the lifetime of that port. They
are in the main hidden behind some macros defined in header file R_ext/libextern.h.

A (non-function) variable in the main R sources that needs to be referred to outside R.d11
(in a package, module or another DLL such as Rgraphapp.dll) should be declared with prefix
LibExtern. The main use is in Rinternals.h, but it needs to be considered for any public
header and also Defn.h.

It would nowadays be possible to make use of the ‘auto-import’ feature of the MinGW port of
1d to fix up imports from DLLs (and if R is built for the Cygwin platform this is what happens).
However, this was not possible when the MinGW build of R was first constructed in ca 1998,
allows less control of visibility and would not work for other Windows compiler suites.

It is only possible to check if this has been handled correctly by compiling the R sources on
Windows.

1.17 Lazy loading

Lazy loading is always used for code in packages but is optional (selected by the package main-
tainer) for datasets in packages. When a package/namespace which uses it is loaded, the pack-
age/namespace environment is populated with promises for all the named objects: when these
promises are evaluated they load the actual code from a database.

There are separate databases for code and data, stored in the R and data subdirectories.
The database consists of two files, name.rdb and name.rdx. The .rdb file is a concatenation
of serialized objects, and the .rdx file contains an index. The objects are stored in (usually)
a gzip-compressed format with a 4-byte header giving the uncompressed serialized length (in

Chapter 1: R Internal Structures 22

XDR, that is big-endian, byte order) and read by a call to the primitive lazyLoadDBfetch.
(Note that this makes lazy-loading unsuitable for really large objects: the unserialized length of
an R object can exceed 4GB.)

The index or ‘map’ file name.rdx is a compressed serialized R object to be read by readRDS.
It is a list with three elements variables, references and compressed. The first two are
named lists of integer vectors of length 2 giving the offset and length of the serialized object
in the name.rdb file. Element variables has an entry for each named object: references
serializes a temporary environment used when named environments are added to the database.
compressed is a logical indicating if the serialized objects were compressed: compression is
always used nowadays. We later added the values compressed = 2 and 3 for bzip2 and xz
compression (with the possibility of future expansion to other methods): these formats add a
fifth byte to the header for the type of compression, and store serialized objects uncompressed
if compression expands them.

Source references are treated specially for performance reasons: bindings lines and
parseData from srcfile environments are loaded lazily. This uses a mechanism that allows
loading selected bindings from an environment lazily. The key for such environment is a list
with two elements: eagerKey gives the length-two integer key for the bindings loaded eagerly
and lazyKeys gives a vector of length-two integer keys, one for each lazily loaded binding.

The loader for a lazy-load database of code or data is function lazyLoad in the base package,
but note that there is a separate copy to load base itself in file R_HOME/base/R/base.

Lazy-load databases are created by the code in src/library/tools/R/makeLazyLoad.R: the
main tool is the unexported function makeLazyLoadDB and the insertion of database entries is
done by calls to .Call("R_lazyLoadDBinsertValue", ...).

Lazy-load databases of less than 10MB are cached in memory at first use: this was found
necessary when using file systems with high latency (removable devices and network-mounted
file systems on Windows).

Lazy-load databases are loaded into the exports for a package, but not into the namespace
environment itself. Thus they are visible when the package is attached, and also via the :: oper-
ator. This was a deliberate design decision, as packages mostly make datasets available for use
by the end user (or other packages), and they should not be found preferentially from functions
in the package, surprising users who expected the normal search path to be used. (There is an
alternative mechanism, sysdata.rda, for ‘system datasets’ that are intended primarily to be
used within the package.)

The same database mechanism is used to store parsed Rd files. One or all of the parsed
objects is fetched by a call to tools: ::fetchRdDB.

23

2 .Internal vs .Primitive

C code compiled into R at build time can be called directly in what are termed primitives or
via the .Internal interface, which is very similar to the .External interface except in syntax.
More precisely, R maintains a table of R function names and corresponding C functions to
call, which by convention all start with ‘do_’ and return a SEXP. This table (R_FunTab in file
src/main/names.c) also specifies how many arguments to a function are required or allowed,
whether or not the arguments are to be evaluated before calling, and whether the function is
‘internal’ in the sense that it must be accessed via the . Internal interface, or directly accessible
in which case it is printed in R as .Primitive.
Functions using .Internal() wrapped in a closure are in general preferred as this ensures

standard handling of named and default arguments. For example, grep is defined as

grep <-

function (pattern, x, ignore.case = FALSE, perl = FALSE, value = FALSE,

fixed = FALSE, useBytes = FALSE, invert = FALSE)

{
if (!is.character(x)) x <- structure(as.character(x), names = names(x))
.Internal (grep(as.character(pattern), x, ignore.case, value,
perl, fixed, useBytes, invert))
}

and the use of as.character allows methods to be dispatched (for example, for factors).
However, for reasons of convenience and also efficiency (as there is some overhead in using the
.Internal interface wrapped in a function closure), the primitive functions are exceptions that
can be accessed directly. And of course, primitive functions are needed for basic operations—for
example .Internal is itself a primitive. Note that primitive functions make no use of R code,
and hence are very different from the usual interpreted functions. In particular, formals and
body return NULL for such objects, and argument matching can be handled differently. For some
primitives (including call, switch, .C and .subset) positional matching is important to avoid
partial matching of the first argument.
The list of primitive functions is subject to change; currently, it includes the following.
1. “Special functions” which really are language elements, but implemented as primitive func-
tions:
{ (if for while repeat break next
return function quote switch
2. Language elements and basic operators (i.e., functions usually not called as foo(a, b,
...)) for subsetting, assignment, arithmetic, comparison and logic:

L (L $ ¢

<- K- = [<- [[<- $<- 0o<-

+ - * / " W Hxh Wk
< = == = >= >

I [l & && !

When the arithmetic, comparison and logical operators are called as functions, any argument
names are discarded so positional matching is used.
3. “Low level” 0— and l-argument functions which belong to one of the following groups of
functions:
a. Basic mathematical functions with a single argument, i.e.,
abs sign sqrt
floor ceiling

Chapter 2: .Internal vs .Primitive

exp
log2
cos
acos
cosh
acosh
cospi

gamma
cumsum

Im Re

expml
logl0
sin
asin
sinh
asinh
sinpi

lgamma

cumprod cummax

loglp
tan
atan
tanh
atanh
tanpi

digamma trigamma

Arg Conj Mod

cummin

24

log is a primitive function of one or two arguments with named argument matching.

trunc is a difficult case: it is a primitive that can have one or more arguments: the
default method handled in the primitive has only one.

b. Functions rarely used outside of “programming” (i.e., mostly used inside other func-

tions), such as

nargs
as.call
as.envir
is.array
is.compl
is.finit
is.langu
is.na
is.numer
is.real
baseenv
unclass

onment
ex
e

age

ic

missing
as.character
as.integer
is.atomic
is.double
is.function
is.list
is.name
is.object
is.recursive
emptyenv
invisible

on.exit
as.complex
as.logical
is.call
is.environment
is.infinite
is.logical
is.nan
is.pairlist
is.single
globalenv
seq_along

c. The programming and session management utilities

browser proc.time

4. The following basic replacement and extractor functions

length<-
class<-
oldClass<-

length
class
oldClass
attr
attributes
names

dim
dimnames

attr<-

attributes<-
names<-

dim<-

dimnames<-
environment<-
levels<-
storage.mode<-

interactive

as.
as.
is.
is.
is.
.matrix
.null

is.
is.

is
is

double

raw
character
expression
integer

raw
symbol

pos.to.env
seq_len

gc.time tracemem retracemem untracemem

Note that optimizing NAMED = 1 is only effective within a primitive (as the closure wrapper
of a .Internal will set NAMED = NAMEDMAX when the promise to the argument is evaluated)
and hence replacement functions should where possible be primitive to avoid copying (at
least in their default methods). [The NAMED mechanism has been replaced by reference

counting]

Chapter 2: .Internal vs .Primitive 25

5. The following functions are primitive for efficiency reasons:

: - C list

call expression substitute

UseMethod standardGeneric

.C .Fortran .Call .External
round signif rep seq.int

as well as the following internal-use-only functions

.Primitive .Internal
.Call.graphics .External.graphics
.subset .subset2
.primTrace .primUntrace
lazyLoadDBfetch

The multi-argument primitives

call switch
.C .Fortran .Call .External

intentionally use positional matching, and need to do so to avoid partial matching to their first
argument. They do check that the first argument is unnamed or for the first two, partially
matches the formal argument name. On the other hand,

attr attr<- browser rememtrace substitute UseMethod
log round signif rep seq.int

manage their own argument matching and do work in the standard way:.

All the one-argument primitives check that if they are called with a named argument that
this (partially) matches the name given in the documentation: this is also done for replacement
functions with one argument plus value.

The net effect is that argument matching for primitives intended for end-user use as functions
is done in the same way as for interpreted functions except for the six exceptions where positional
matching is required.

2.1 Special primitives

A small number of primitives are specials rather than builtins, that is they are entered with
unevaluated arguments. This is clearly necessary for the language constructs and the assignment
operators, as well as for && and || which conditionally evaluate their second argument, and ~,
.Internal, call, expression, missing, on.exit, quote and substitute which do not evaluate
some of their arguments.

rep and seq.int are special as they evaluate some of their arguments conditional on which
are non-missing.

log, round and signif are special to allow default values to be given to missing arguments.

The subsetting, subassignment and @ operators are all special. (For both extraction and
replacement forms, $ and @ take a symbol argument, and [and [[allow missing arguments.)

UseMethod is special to avoid the additional contexts added to calls to builtins.

2.2 Special internals

There are also special .Internal functions: NextMethod, Recall, withVisible, cbind, rbind
(to allow for the deparse.level argument), eapply, lapply and vapply.

Chapter 2: .Internal vs .Primitive 26

2.3 Prototypes for primitives

Prototypes are available for the primitive functions and operators, and these are used for print-
ing, args and package checking (e.g. by tools::checkS3methods and by package codetools
(https://CRAN.R-project.org/package=codetools)). There are two environments in the
base package (and namespace), ‘.GenericArgsEnv’ for those primitives which are internal S3
generics, and ‘. ArgsEnv’ for the rest. Those environments contain closures with the same names
as the primitives, formal arguments derived (manually) from the help pages, a body which is a
suitable call to UseMethod or NULL and environment the base namespace.

The C code for print.default and args uses the closures in these environments in preference
to the definitions in base (as primitives).

The QC function undoc checks that all the functions prototyped in these environments are
currently primitive, and that the primitives not included are better thought of as language
elements (at the time of writing

$ $<- & (: @ o= [[[[k [&= { Il 7 <= <= =
break for function 1if next repeat return while

). Onme could argue about ~, but it is known to the parser and has semantics quite unlike a
normal function. And : is documented with different argument names in its two meanings.

The QC functions codoc and checkS3methods also make use of these environments (effec-
tively placing them in front of base in the search path), and hence the formals of the functions
they contain are checked against the help pages by codoc. However, there are two problems
with the generic primitives. The first is that many of the operators are part of the S3 group
generic Ops and that defines their arguments to be el and e2: although it would be very un-
usual, an operator could be called as e.g. "+"(el=a, e2=b) and if method dispatch occurred
to a closure, there would be an argument name mismatch. So the definitions in environment
.GenericArgsEnv have to use argument names el and e2 even though the traditional docu-
mentation is in terms of x and y: codoc makes the appropriate adjustment via tools:::.make_
S3_primitive_generic_env. The second discrepancy is with the Math group generics, where
the group generic is defined with argument list (x, ...), but most of the members only allow
one argument when used as the default method (and round and signif allow two as default
methods): again fix-ups are used.

Those primitives which are in .GenericArgsEnv are checked (via tests/primitives.R) to
be generic via defining methods for them, and a check is made that the remaining primitives
are probably not generic, by setting a method and checking it is not dispatched to (but this can
fail for other reasons). However, there is no certain way to know that if other .Internal or
primitive functions are not internally generic except by reading the source code.

2.4 Adding a primitive

[For R-core use: reverse this procedure to remove a primitive. Most commonly this is done by
changing a .Internal to a primitive or vice versa.]

Primitives are listed in the table R_FunTab in src/main/names.c: primitives have ‘Y = 0’ in
the ‘eval’ field.

There needs to be an ‘\alias’ entry in a help file in the base package, and the primitive
needs to be added to one of the lists at the start of this section.

Some primitives are regarded as language elements (the current ones are listed
above). These need to be added to two lists of exceptions, langElts in undoc() (in file
src/library/tools/R/QC.R) and lang_elements in tests/primitives.R.

All other primitives are regarded as functions and should be listed in one of the environments
defined in src/library/base/R/zzz.R, either .ArgsEnv or .GenericArgsEnv: internal generics

https://CRAN.R-project.org/package=codetools
https://CRAN.R-project.org/package=codetools

Chapter 2: .Internal vs .Primitive 27

also need to be listed in the character vector .S3PrimitiveGenerics. Note too the discussion
about argument matching above: if you add a primitive function with more than one argument
by converting a .Internal you need to add argument matching to the C code, and for those
with a single argument, add argument-name checking.

Do ensure that make check-devel has been run: that tests most of these requirements.

28

3 Internationalization in the R sources

The process of marking messages (errors, warnings etc) for translation in an R package is de-
scribed in Section “Internationalization” in Writing R Extensions, and the standard packages
included with R have (with an exception in grDevices for the menus of the windows() device)
been internationalized in the same way as other packages.

3.1 R code

Internationalization for R code is done in exactly the same way as for extension packages. As
all standard packages which have R code also have a namespace, it is never necessary to specify
domain, but for efficiency calls to message, warning and stop should include domain = NA when
the message is constructed via gettextf, gettext or ngettext.

For each package, the extracted messages and translation sources are stored under package

directory po in the source package, and compiled translations under inst/po for installation to
package directory po in the installed package. This also applies to C code in packages.

3.2 Main C code

The main C code (e.g. that in files src/*/*.c and in the modules) is where R is closest to the
sort of application for which ‘gettext’ was written. Messages in the main C code are in domain
R and stored in the top-level directory po with compiled translations under share/locale.

The list of files covered by the R domain is specified in file po/POTFILES. in.

The normal way to mark messages for translation is via _("msg") just as for packages.
However, sometimes one needs to mark passages for translation without wanting them translated
at the time, for example when declaring string constants. This is the purpose of the N_ macro,
for example

{ ERROR_ARGTYPE, N_("invalid argument type")},
from file src/main/errors.c.

The P_ macro

#ifdef ENABLE_NLS

#define P_(StringS, StringP, N) ngettext (StringS, StringP, N)

#else

#define P_(StringS, StringP, N) (N > 1 ? StringP: StringS)

#endif
may be used as a wrapper for ngettext: however in some cases the preferred approach has been
to conditionalize (on ENABLE_NLS) code using ngettext.

The macro _("msg") can safely be used in directory src/appl; the header for standalone
‘nmath’ skips possible translation. (This does not apply to N_ or P_).

3.3 Windows-GUI-specific code

Messages for the Windows GUI are in a separate domain ‘RGui’. This was done for two reasons:

e The translators for the Windows version of R might be separate from those for the rest of
R (familiarity with the GUI helps), and

o Messages for Windows are most naturally handled in the native charset for the language,
and in the case of CJK languages the charset is Windows-specific. (It transpires that as the
iconv we ported works well under Windows, this is less important than anticipated.)

Messages for the ‘RGui’ domain are marked by G_("msg"), a macro that is defined in
header file src/gnuwin32/win-nls.h. The list of files that are considered is hardcoded in

Chapter 3: Internationalization in the R sources 29

function update_RGui_po in file src/library/tools/R/translations.R, which is invoked via
the update-RGui target of file po/Makefile.win: note that this includes devWindows.c as the
menus on the windows device are considered to be part of the GUIL (There is also GN_("msg"),
the analogue of N_("msg").)

The template and message catalogs for the ‘RGui’ domain are in the top-level po directory
of package base.

3.4 macOS GUI

This is handled separately: see https://developer.r-project.org/Translations30.html.

3.5 Updating
See file po/README for how to update the message templates and catalogs.

https://developer.r-project.org/Translations30.html

30

4 Structure of an Installed Package

The structure of a source packages is described in Section “Creating R packages” in Writing R
Extensions: this chapter is concerned with the structure of installed packages.

An installed package has a top-level file DESCRIPTION, a copy of the file of that name in the
package sources with a ‘Built’ field appended, and file INDEX, usually describing the objects on
which help is available, a file NAMESPACE if the package has a name space, optional files such as
CITATION, LICENCE and NEWS, and any other files copied in from inst. It will have directories
Meta, help and html (even if the package has no help pages), almost always has a directory R
and often has a directory 1ibs to contain compiled code. Other directories with known meaning
to R are data, demo, doc and po.

Function library looks for a namespace and if one is found passes control to loadNamespace.
Then library or loadNamespace looks for file R/pkgname, warns if it is not found and otherwise
sources the code (using sys.source) into the package’s environment, then lazy-loads a database
R/sysdata if present. So how R code gets loaded depends on the contents of R/pkgname: a
standard template to load lazy-load databases are provided in share/R/nspackloader.R.

Compiled code is usually loaded when the package’s namespace is loaded by a useDynlib
directive in a NAMESPACE file or by the package’s .onLoad function. Conventionally compiled
code is loaded by a call to library.dynam and this looks in directory 1ibs (and in an appropriate
sub-directory if sub-architectures are in use) for a shared object (Unix-alike) or DLL (Windows).

Subdirectory data serves two purposes. In a package using lazy-loading of data, it contains
a lazy-load database Rdata, plus a file Rdata.rds which contain a named character vector used
by data() in the (unusual) event that it is used for such a package. Otherwise it is a copy of the
data directory in the sources, with saved images re-compressed if R CMD INSTALL --resave-data
was used.

Subdirectory demo supports the demo function, and is copied from the sources.

Subdirectory po contains (in subdirectories) compiled message catalogs.

4.1 Metadata

Directory Meta contains several files in .rds format, that is serialized R objects written
by saveRDS. All packages have files Rd.rds, hsearch.rds, links.rds, features.rds, and
package.rds. Packages with namespaces have a file nsInfo.rds, and those with data, demos
or vignettes have data.rds, demo.rds or vignette.rds files.

The structure of these files (and their existence and names) is private to R, so the description
here is for those trying to follow the R sources: there should be no reference to these files in
non-base packages.

File package.rds is a dump of information extracted from the DESCRIPTION file. It is a list of
several components. The first, ‘DESCRIPTION’, is a character vector, the DESCRIPTION file as read
by read.dcf. Further elements ‘Depends’, ‘Suggests’, ‘Imports’, ‘Rdepends’ and ‘Rdepends?2’
record the ‘Depends’, ‘Suggests’ and ‘Imports’ fields. These are all lists, and can be empty.
The first three have an entry for each package named, each entry being a list of length 1 or 3,
which element ‘name’ (the package name) and optional elements ‘op’ (a character string) and
‘version’ (an object of class ‘"package_version"’). Element ‘Rdepends’ is used for the first
version dependency on R, and ‘Rdepends?2’ is a list of zero or more R version dependencies—each
is a three-element list of the form described for packages. Element ‘Rdepends’ is no longer used,
but it is still potentially needed so R < 2.7.0 can detect that the package was not installed for it.

File nsInfo.rds records a list, a parsed version of the NAMESPACE file.

File Rd.rds records a data frame with one row for each help file. The columns are ‘File’
(the file name with extension), ‘Name’ (the ‘\name’ section), ‘Type’ (from the optional ‘\docType’

Chapter 4: Structure of an Installed Package 31

section), ‘Title’, ‘Encoding’, ‘Aliases’, ‘Concepts’ and ‘Keywords’. All columns are character
vectors apart from ‘Aliases’, which is a list of character vectors.

File hsearch.rds records the information to be used by ‘help.search’. This is a list of four
unnamed elements which are character matrices for help files, aliases, keywords and concepts.
All the matrices have columns ‘ID’ and ‘Package’ which are used to tie the aliases, keywords
and concepts (the remaining column of the last three elements) to a particular help file. The
first element has further columns ‘LibPath’ (stored as "" and filled in what the file is loaded),
‘name’, ‘title’, ‘topic’ (the first alias, used when presenting the results as ‘pkgname: : topic’)
and ‘Encoding’.

File links.rds records a named character vector, the names being aliases and the values
character strings of the form

"../../pkgname/html/filename.html"

File data.rds records a two-column character matrix with columns of dataset names and
titles from the corresponding help file. File demo.rds has the same structure for package demos.

File vignette.rds records a data frame with one row for each ‘vignette’ (. [RS]nw file in
inst/doc) and with columns ‘File’ (the full file path in the sources), ‘Title’, ‘PDF’ (the pathless
file name of the installed PDF version, if present), ‘Depends’, ‘Keywords’ and ‘R’ (the pathless
file name of the installed R code, if present).

4.2 Help

All installed packages, whether they had any .Rd files or not, have help and html directories.
The latter normally only contains the single file 00Index.html, the package index which has
hyperlinks to the help topics (if any).

Directory help contains files AnIndex, paths.rds and pkgname.rd[bx]. The latter two files
are a lazy-load database of parsed .Rd files, accessed by tools:::fetchRdDB. File paths.rds
is a saved character vector of the original path names of the .Rd files, used when updating the
database.

File AnIndex is a two-column tab-delimited file: the first column contains the aliases defined
in the help files and the second the basename (without the .Rd or .rd extension) of the file
containing that alias. It is read by utils:::index.search to search for files matching a topic
(alias), and read by scan in utils:::matchAvailableTopics, part of the completion system.

File aliases.rds is the same information as AnIndex as a named character vector (names
the topics, values the file basename), for faster access.

32

5 Files

R provides many functions to work with files and directories: many of these have been added
relatively recently to facilitate scripting in R and in particular the replacement of Perl scripts
by R scripts in the management of R itself.

These functions are implemented by standard C/POSIX library calls, except on Windows.
That means that filenames must be encoded in the current locale as the OS provides no other
means to access the file system: increasingly filenames are stored in UTF-8 and the OS will
translate filenames to UTF-8 in other locales. So using a UTF-8 locale gives transparent access
to the whole file system.

Windows is another story. There the internal view of filenames is in UTF-16LE (so-called
‘Unicode’), and standard C library calls can only access files whose names can be expressed in
the current codepage. To circumvent that restriction, there is a parallel set of Windows-specific
calls which take wide-character arguments for filepaths. Much of the file-handling in R has been
moved over to using these functions, so filenames can be manipulated in R as UTF-8 encoded
character strings, converted to wide characters (which on Windows are UTF-16LE) and passed
to the OS. The utilities RC_fopen and filenameToWchar help this process. Currently file.copy
to a directory, list.files, list.dirs and path.expand work only with filepaths encoded in
the current codepage.

All these functions do tilde expansion, in the same way as path.expand, with the deliberate
exception of Sys.glob.

File names may be case sensitive or not: the latter is the norm on Windows and macOS, the
former on other Unix-alikes. Note that this is a property of both the OS and the file system: it
is often possible to map names to upper or lower case when mounting the file system. This can
affect the matching of patterns in list.files and Sys.glob.

File names commonly contain spaces on Windows and macOS but not elsewhere. As file
names are handled as character strings by R, spaces are not usually a concern unless file names
are passed to other process, e.g. by a system call.

Windows has another couple of peculiarities. Whereas a POSIX file system has a single root
directory (and other physical file systems are mounted onto logical directories under that root),
Windows has separate roots for each physical or logical file system (‘volume’), organized under
drives (with file paths starting D: for an ASCII letter, case-insensitively) and network shares
(with paths like \netname\topdir\myfiles\a file). There is a current drive, and path names
without a drive part are relative to the current drive. Further, each drive has a current directory,
and relative paths are relative to that current directory, on a particular drive if one is specified.
SoD:dir\file and D: are valid path specifications (the last being the current directory on drive
D:).

33

6 Graphics

R’s graphics internals were re-designed to enable multiple graphics systems to be installed on top
on the graphics ‘engine’ — currently there are two such systems, one supporting ‘base’ graphics
(based on that in S and whose R code' is in package graphics) and one implemented in package
grid.

Some notes on the historical changes can be found at https://www.stat.auckland.
ac.nz/"paul/R/basegraph.html and https://www.stat.auckland.ac.nz/ paul/R/
graphicsChanges.html.

At the lowest level is a graphics device, which manages a plotting surface (a screen window
or a representation to be written to a file). This implements a set of graphics primitives, to
‘draw’

e a circle, optionally filled

e a rectangle, optionally filled

e a line

e a set of connected lines

e a polygon, optionally filled

e a paths, optionally filled using a winding rule
e text

e a raster image (optional)

e and to set a clipping rectangle

as well as requests for information such as
e the width of a string if plotted
e the metrics (width, ascent, descent) of a single character

e the current size of the plotting surface

and requests/opportunities to take action such as
e start a new ‘page’, possibly after responding to a request to ask the user for confirmation.
e return the position of the device pointer (if any).

e when a device become the current device or stops being the current device (this is usually
used to change the window title on a screen device).

e when drawing starts or finishes (e.g. used to flush graphics to the screen when drawing
stops).
e wait for an event, for example a mouse click or keypress.
e an ‘onexit’ action, to clean up if plotting is interrupted (by an error or by the user).
e capture the current contents of the device as a raster image.
e close the device.
The device also sets a number of variables, mainly Boolean flags indicating its capabilities.

Devices work entirely in ‘device units’ which are up to its developer: they can be in pixels, big
points (1/72 inch), twips, . .., and can differ? in the ‘x’ and ‘y’ directions.

The next layer up is the graphics ‘engine’ that is the main interface to the device (although
the graphics subsystems do talk directly to devices). This is responsible for clipping lines,
rectangles and polygons, converting the pch values 0. . .26 to sets of lines/circles, centring (and

1 The C code is in files base.c, graphics.c, par.c, plot.c and plot3d.c in directory src/main.

2 although that needs to be handled carefully, as for example the circle callback is given a radius (and that
should be interpreted as in the x units).

https://www.stat.auckland.ac.nz/~paul/R/basegraph.html
https://www.stat.auckland.ac.nz/~paul/R/basegraph.html
https://www.stat.auckland.ac.nz/~paul/R/graphicsChanges.html
https://www.stat.auckland.ac.nz/~paul/R/graphicsChanges.html

Chapter 6: Graphics 34

otherwise adjusting) text, rendering mathematical expressions (‘plotmath’) and mapping colour
descriptions such as names to the internal representation.

Another function of the engine is to manage display lists and snapshots. Some but not all
instances of graphics devices maintain display lists, a ‘list” of operations that have been performed
on the device to produce the current plot (since the device was opened or the plot was last cleared,
e.g. by plot.new). Screen devices generally maintain a display list to handle repaint and resize
events whereas file-based formats do not—display lists are also used to implement dev.copy ()
and friends. The display list is a pairlist of . Internal (base graphics) or .Call.graphics (grid
graphics) calls, which means that the C code implementing a graphics operation will be re-called
when the display list is replayed: apart from the part which records the operation if successful.

Snapshots of the current graphics state are taken by GEcreateSnapshot and replayed later
in the session by GEplaySnapshot. These are used by recordPlot(), replayPlot() and the
GUI menus of the windows () device. The ‘state’ includes the display list.

The top layer comprises the graphics subsystems. Although there is provision for 24 subsys-
tems since about 2001, currently still only two exist, ‘base’ and ‘grid’. The base subsystem is
registered with the engine when R is initialized, and unregistered (via KillAllDevices) when
an R session is shut down. The grid subsystem is registered in its .onLoad function and unreg-
istered in the .onUnload function. The graphics subsystem may also have ‘state’ information
saved in a snapshot (currently base does and grid does not).

Package grDevices was originally created to contain the basic graphics devices (although X11
is in a separate load-on-demand module because of the volume of external libraries it brings
in). Since then it has been used for other functionality that was thought desirable for use with
grid, and hence has been transferred from package graphics to grDevices. This is principally
concerned with the handling of colours and recording and replaying plots.

6.1 Graphics Devices

R ships with several graphics devices, and there is support for third-party packages to provide
additional devices—several packages now do. This section describes the device internals from
the viewpoint of a would-be writer of a graphics device.

6.1.1 Device structures

There are two types used internally which are pointers to structures related to graphics devices.

The DevDesc type is a structure defined in the header file R_ext/GraphicsDevice.h (which is
included by R_ext/GraphicsEngine.h). This describes the physical characteristics of a device,
the capabilities of the device driver and contains a set of callback functions that will be used
by the graphics engine to obtain information about the device and initiate actions (e.g. a new
page, plotting a line or some text). Type pDevDesc is a pointer to this type.

The following callbacks can be omitted (or set to the null pointer, their default value) when
appropriate default behaviour will be taken by the graphics engine: activate, cap, deactivate,
locator, holdflush (API version 9), mode, newFrameConfirm, path, raster and size.

The relationship of device units to physical dimensions is set by the element ipr of the
DevDesc structure: a ‘double’ array of length 2.

The GEDevDesc type is a structure defined in R_ext/GraphicsEngine.h (with comments in
the file) as

typedef struct _GEDevDesc GEDevDesc;
struct _GEDevDesc {

pDevDesc dev;

Rboolean displayListOn;

SEXP displayList;

Chapter 6: Graphics 35

SEXP DLlastElt;

SEXP savedSnapshot;

Rboolean dirty;

Rboolean recordGraphics;

GESystemDesc *gesd[MAX_GRAPHICS_SYSTEMS] ;
Rboolean ask;

}

So this is essentially a device structure plus information about the device maintained by the
graphics engine and normally? visible to the engine and not to the device. Type pGEDevDesc is
a pointer to this type.

The graphics engine maintains an array of devices, as pointers to GEDevDesc structures. The
array is of size 64 but the first element is always occupied by the "null device" and the final
element is kept as NULL as a sentinel.* This array is reflected in the R variable ‘.Devices’.
Once a device is killed its element becomes available for reallocation (and its name will appear
as "" in ‘.Devices’). Exactly one of the devices is ‘active’: this is the the null device if no other
device has been opened and not killed.

Each instance of a graphics device needs to set up a GEDevDesc structure by code very similar
to

pGEDevDesc gdd;

R_GE_checkVersionOrDie(R_GE_version) ;
R_CheckDeviceAvailable();
BEGIN_SUSPEND_INTERRUPTS {
pDevDesc dev;
/* Allocate and initialize the device driver data */
if (!(dev = (pDevDesc) calloc(l, sizeof(DevDesc))))
return 0; /* or error() */
/* set up device driver or free 'dev' and error() */
gdd = GEcreateDevDesc(dev) ;
GEaddDevice2(gdd, "dev_name");
} END_SUSPEND_INTERRUPTS;

The DevDesc structure contains a void * pointer ‘deviceSpecific’ which is used to store
data specific to the device. Setting up the device driver includes initializing all the non-zero
elements of the DevDesc structure.

Note that the device structure is zeroed when allocated: this provides some protection against
future expansion of the structure since the graphics engine can add elements that need to be
non-NULL /non-zero to be ‘on’ (and the structure ends with 64 reserved bytes which will be
zeroed and allow for future expansion).

Rather more protection is provided by the version number of the engine/device API, R_GE_
version defined in R_ext/GraphicsEngine.h together with access functions
int R_GE_getVersion(void);
void R_GE_checkVersionOrDie(int version);
If a graphics device calls R_GE_checkVersionOrDie (R_GE_version) it can ensure it will only
be used in versions of R which provide the API it was designed for and compiled against.

The DevDesc structure also contains an int ‘deviceVersion’ to indicate which version of the
engine/device API that the device supports. If the device driver sets this correctly, there is no

3 It is possible for the device to find the GEDevDesc which points to its DevDesc, and this is done often enough
that there is a convenience function desc2GEDesc to do so.

4 Calling R_CheckDeviceAvailable() ensures there is a free slot or throws an error.

Chapter 6: Graphics 36

need for a device driver to use R_GE_checkVersionOrDie(R_GE_version) because the graphics
engine will not make use of callbacks from an API version above the version that is supported
by the device.

6.1.2 Device capabilities

The following ‘capabilities’ can be defined for the device’s DevDesc structure.

e canChangeGamma — Rboolean: can the display gamma be adjusted? This is now ignored, as
gamma support has been removed.

e canHadj — integer: can the device do horizontal adjustment of text via the text callback,
and if so, how precisely? 0 = no adjustment, 1 = {0, 0.5, 1} (left, centre, right justification)
or 2 = continuously variable (in [0,1]) between left and right justification.

e canGenMouseDown — Rboolean: can the device handle mouse down events? This flag and
the next three are not currently used by R, but are maintained for back compatibility.

e canGenMouseMove — Rboolean: ditto for mouse move events.

e canGenMouseUp — Rboolean: ditto for mouse up events.

e canGenKeybd — Rboolean: ditto for keyboard events.

e hasTextUTF8 — Rboolean: should non-symbol text be sent (in UTF-8) to the textUTF8 and
strWidthUTF8 callbacks, and sent as Unicode points (negative values) to the metricInfo
callback?

e wantSymbolUTF8 — Rboolean: should symbol text be handled in UTF-8 in the same way as
other text? Requires textUTF8 = TRUE.

e haveTransparency: does the device support semi-transparent colours?

e haveTransparentBg: can the background be fully or semi-transparent?

e haveRaster: is there support for rendering raster images?

e haveCapture: is there support for grid: :grid.cap?

e haveLocator: is there an interactive locator?

e deviceClip: should the engine leave all clipping to the device?

haveRaster, haveCapture, and haveLocator can often be deduced to be false from the
presence of NULL entries instead of the corresponding functions.

In addition, the capabilities callback allows the device driver to provide more detailed
information, especially related to callbacks in the engine/device API version 13 or higher.

The capabilities callback is called with a list of integer vectors that represent the best
guess that the graphics engine can make, based on the flags in the DevDesc structure and the
‘deviceVersion’. For some capabilities, the integer vector is length 1 with 0 for no support, 1
for support, or NA for unknown support. For capabilities where support can be more nuanced,
the integer vector may either take higher values or it may have length greater than 1, though
length 1 and 0 still means no support and NA still means unknown support.

The following components of this list are likely to need modifying (for these, the graphics
engine can only guess 0 if ‘deviceVersion’ is too low or NA otherwise):

e The patterns component reports what sort of pattern fills are supported. If the device
supports one or more pattern types, this component should be replaced with an inte-
ger vector containing a value for each supported pattern type; the graphics engine pro-
vides constants R_GE_linearGradientPattern, R_GE_radialGradientPattern, and R_GE_
tilingPattern. If the device does not provide support, this component should be set to
0.

e The clippingPaths component reports whether arbitrary clipping paths are supported. If
the device supports clipping paths, this component should be set to 1. If the device does
not provide support, this component should be set to 0.

Chapter 6: Graphics 37

e The masks component reports what sort of masks are supported. If the device supports one
or more mask types, this component should be replaced with an integer vector containing a
value for each supported mask type; the graphics engine provides constants R_GE_alphaMask
and R_GE_luminanceMask. If the device does not provide support, this component should
be set to 0.

e The compositing component reports which compositing operators are supported. If the
device supports one or more compositing operators, this component should be replaced
with an integer vector containing a value for each supported operator; The list of possi-
ble operators is long, encompassing Porter-Duff operators and Adobe PDF Blend Modes;
the graphics engine provides constants R_GE_compositeClear, etc. If the device does not
provide support, this component should be set to 0.

e The transformations component reports whether affine transformations are supported. If
the device supports transformations, this component should be set to 1. If the device does
not provide support, this component should be set to 0.

e The paths component reports whether stroking and filling of paths composed of multiple
shapes is supported. If the device supports stroking and filling paths, this component should
be set to 1. If the device does not provide support, this component should be set to 0.

e The glyphs component reports whether rendering glyphs (e.g., via grid: :grid.glyphQ))
is supported. If the device supports rendering glyphs, this component should be set to 1.
If the device does not provide support, this component should be set to 0.

The graphics engine provides constants like R_GE_capability_patterns for selecting the
appropriate component of the list of capabilities.

It is valid (if unhelpful) for the device driver to return the list of capabilities unaltered.

6.1.3 Handling text

Handling text is probably the hardest task for a graphics device, and the design allows for the
device to optionally indicate that it has additional capabilities. (If the device does not, these
will if possible be handled in the graphics engine.)

The three callbacks for handling text that must be in all graphics devices are text, strWidth
and metricInfo with declarations

void text(double x, double y, const char *str, double rot, double hadj,
pGgcontext gc, pDevDesc dd);

double strWidth(const char *str, pGEcontext gc, pDevDesc dd);

void metricInfo(int c, pGEcontext gc,
double* ascent, doublex descent, double* width,
pDevDesc dd) ;

The ‘gc’ parameter provides the graphics context, most importantly the current font and fontsize,
and ‘dd’ is a pointer to the active device’s structure.

The text callback should plot ‘str’ at ‘(x, y)’® with an anti-clockwise rotation of ‘rot’
degrees. (For ‘hadj’ see below.) The interpretation for horizontal text is that the baseline is at
y and the start is a x, so any left bearing for the first character will start at x.

The strWidth callback computes the width of the string which it would occupy if plotted
horizontally in the current font. (Width here is expected to include both (preferably) or neither
of left and right bearings.)

The metricInfo callback computes the size of a single character: ascent is the distance it
extends above the baseline and descent how far it extends below the baseline. width is the

5 in device coordinates

Chapter 6: Graphics 38

amount by which the cursor should be advanced when the character is placed. For ascent and
descent this is intended to be the bounding box of the ‘ink’ put down by the glyph and not
the box which might be used when assembling a line of conventional text (it needs to be for e.g.
hat (beta) to work correctly). However, the width is used in plotmath to advance to the next
character, and so needs to include left and right bearings.

The interpretation of ‘c’ depends on the locale. In a single-byte locale values 32...255
indicate the corresponding character in the locale (if present). For the symbol font (as used by
‘graphics: :par(font=5)’, ‘grid::gpar(fontface=5") and by ‘plotmath’), values 32...126,
161...239, 241...254 indicate glyphs in the Adobe Symbol encoding. In a multibyte locale,
c represents a Unicode point (except in the symbol font). So the function needs to include code
like

Rboolean Unicode = mbcslocale && (gc->fontface != B);

if (¢ < 0) { Unicode = TRUE; ¢ = —c; }

if (Unicode) UniCharMetric(c, ...); else CharMetric(c, ...);
In addition, if device capability hasTextUTF8 (see below) is true, Unicode points will be passed
as negative values: the code snippet above shows how to handle this. (This applies to the symbol
font only if device capability wantSymbolUTF8 is true.)

If possible, the graphics device should handle clipping of text. It indicates this by the
structure element canClip which if true will result in calls to the callback clip to set the
clipping region. If this is not done, the engine will clip very crudely (by omitting any text that
does not appear to be wholly inside the clipping region).

The device structure has an integer element canHadj, which indicates if the device can do
horizontal alignment of text. If this is one, argument ‘hadj’ to text will be called as 0 ,0.5, 1
to indicate left-, centre- and right-alignment at the indicated position. If it is two, continuous
values in the range [0, 1] are assumed to be supported.

Capability hasTextUTF8 if true, it has two consequences. First, there are callbacks textUTF8
and strWidthUTF8 that should behave identically to text and strWidth except that ‘str’ is
assumed to be in UTF-8 rather than the current locale’s encoding. The graphics engine will
call these for all text except in the symbol font. Second, Unicode points will be passed to the
metricInfo callback as negative integers. If your device would prefer to have UTF-8-encoded
symbols, define wantSymbolUTF8 as well as hasTextUTF8. In that case text in the symbol font
is sent to textUTF8 and strWidthUTFS.

Some devices can produce high-quality rotated text, but those based on bitmaps often cannot.
Those which can should set useRotatedTextInContour to be true from graphics API version 4.

Several other elements relate to the precise placement of text by the graphics engine:

double xCharQOffset;
double yCharOffset;
double yLineBias;
double cral2];

These are more than a little mysterious. Element cra provides an indication of the character
size, par("cra") in base graphics, in device units. The mystery is what is meant by ‘character
size’: which character, which font at which size? Some help can be obtained by looking at
what this is used for. The first element, ‘width’, is not used by R except to set the graphical
parameters. The second, ‘height’, is use to set the line spacing, that is the relationship between
par("mar") and par("mai") and so on. It is suggested that a good choice is

dd->cral[0] = 0.9 * fnsize;

dd->crall] = 1.2 * fnsize;
where ‘fnsize’ is the ‘size’ of the standard font (cex=1) on the device, in device units. So for
a 12-point font (the usual default for graphics devices), ‘fnsize’ should be 12 points in device
units.

Chapter 6: Graphics 39

The remaining elements are yet more mysterious. The postscript() device says

/* Character Addressing Offsets */
/* These offsets should center a single */
/* plotting character over the plotting point. */

/* Pure guesswork and eyeballing ... */
dd->xChar0ffset = 0.4900;
dd->yCharOffset = 0.3333;

dd->yLineBias = 0.2;
It seems that xCharOffset is not currently used, and yCharOffset is used by the base graphics
system to set vertical alignment in text() when pos is specified, and in identify(). It is
occasionally used by the graphic engine when attempting exact centring of text, such as character
string values of pch in points() or grid.points()—however, it is only used when precise
character metric information is not available or for multi-line strings.

yLineBias is used in the base graphics system in axis() and mtext () to provide a default
for their ‘padj’ argument.

From R_GE_version 16 (R_GE_glyphs), there is also a glyph callback.
void glyph(int n, int *glyphs, double *x, double x*y,
SEXP font, double size,
int colour, double rot, pDevDesc dd);

This instructs the device to draw a specific glyph within a given font, where the font is
specified by filename (and index), with font family, weight, and style also provided as fallbacks.

6.1.4 Conventions

The aim is to make the (default) output from graphics devices as similar as possible. Generally
people follow the model of the postscript and pdf devices (which share most of their internal
code).

The following conventions have become established:
e The default size of a device should be 7 inches square.

e There should be a ‘pointsize’ argument which defaults to 12, and it should give the
pointsize in big points (1/72 inch). How exactly this is interpreted is font-specific, but it
should use a font which works with lines packed 1/6 inch apart, and looks good with lines
1/5 inch apart (that is with 2pt leading).

e The default font family should be a sans serif font, e.g Helvetica or similar (e.g. Arial on
Windows).

e 1lwd = 1 should correspond to a line width of 1/96 inch. This will be a problem with pixel-
based devices, and generally there is a minimum line width of 1 pixel (although this may
not be appropriate where anti-aliasing of lines is used, and cairo prefers a minimum of 2
pixels).

e Even very small circles should be visible, e.g. by using a minimum radius of 1 pixel or
replacing very small circles by a single filled pixel.

e How RGB colour values will be interpreted should be documented, and preferably be sSRGB.

e The help page should describe its policy on these conventions.

These conventions are less clear-cut for bitmap devices, especially where the bitmap format
does not have a design resolution.

The interpretation of the line texture (par("lty") is described in the header
GraphicsEngine.h and in the help for par: note that the ‘scale’ of the pattern should be
proportional to the line width (at least for widths above the default).

Chapter 6: Graphics 40

6.1.5 ‘Mode’

One of the device callbacks is a function mode, documented in the header as

* device_Mode is called whenever the graphics engine
* starts drawing (mode=1) or stops drawing (mode=0)
* GMode (in graphics.c) also says that

* mode = 2 (graphical input on) exists.

* The device is not required to do anything

Since mode = 2 has only recently been documented at device level. It could be used to change
the graphics cursor, but devices currently do that in the locator callback. (In base graphics
the mode is set for the duration of a locator call, but if type != "n" is switched back for each
point whilst annotation is being done.)

Many devices do indeed do nothing on this call, but some screen devices ensure that drawing
is flushed to the screen when called with mode = 0. It is tempting to use it for some sort of
buffering, but note that ‘drawing’ is interpreted at quite a low level and a typical single figure
will stop and start drawing many times. The buffering introduced in the X11() device makes
use of mode = 0 to indicate activity: it updates the screen after ca 100ms of inactivity.

This callback need not be supplied if it does nothing.

6.1.6 Graphics events
Graphics devices may be designed to handle user interaction: not all are.

Users may use grDevices: :setGraphicsEventEnv to set the eventEnv environment in the
device driver to hold event handlers. When the user calls grDevices: :getGraphicsEvent,
R will take three steps. First, it sets the device driver member gettingEvent to true for
each device with a non-NULL eventEnv entry, and calls initEvent (dd, true) if the callback is
defined. It then enters an event loop. Each time through the loop R will process events once,
then check whether any device has set the result member of eventEnv to a non-NULL value,
and will save the first such value found to be returned. C functions doMouseEvent and doKeybd
are provided to call the R event handlers onMouseDown, onMouseMove, onMouseUp, and onKeybd
and set eventEnv$result during this step. Finally, initEvent is called again with init=false
to inform the devices that the loop is done, and the result is returned to the u