glucat  0.12.0
Class Hierarchy

Go to the graphical class hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 123]
 Cbitset
 Cglucat::index_set< LO, HI >Index set class based on std::bitset<> in Gnu standard C++ library
 Cglucat::bool_to_type< truth_value >Bool to type
 Ccdef
 CPyClical.clifford
 CPyClical.index_set
 CClifford
 CPyClical.clifford
 Cglucat::clifford_algebra< Scalar_T, Index_Set_T, Multivector_T >Clifford_algebra<> declares the operations of a Clifford algebra
 Cglucat::clifford_algebra< Scalar_T, index_set< LO, HI >, framed_multi< Scalar_T, LO, HI, Tune_P > >
 Cglucat::framed_multi< Scalar_T, LO, HI, Tune_P >A framed_multi<Scalar_T,LO,HI,Tune_P> is a framed approximation to a multivector
 Cglucat::clifford_algebra< Scalar_T, index_set< LO, HI >, matrix_multi< Scalar_T, LO, HI, Tune_P > >
 Cglucat::matrix_multi< Scalar_T, LO, HI, Tune_P >A matrix_multi<Scalar_T,LO,HI,Tune_P> is a matrix approximation to a multivector
 Cglucat::compare_types< LHS_T, RHS_T >Type comparison
 Cglucat::compare_types< T, T >
 Cglucat::control_tParameters to control tests
 Cglucat::CTAssertion< bool >Compile time assertion
 Cglucat::CTAssertion< true >
 Cglucat::numeric_traits< Scalar_T >::demoted<>Demoted type for long double
 Cglucat::matrix::eig_genus< Matrix_T >Structure containing classification of eigenvalues
 Cglucat::framed_multi< Scalar_T, LO, HI, Tune_P >::hash_size_t
 Cglucat::index_set_hash< LO, HI >
 CIndexSet
 CPyClical.index_set
 Cinline
 CPyClical.clifford
 CPyClical.index_set
 Clogic_error
 Cglucat::glucat_errorAbstract exception class
 Cglucat::error< Class_T >Specific exception class
 Cmap
 Cglucat::basis_table< Scalar_T, LO, HI, Matrix_T >Table of basis elements used as a cache by basis_element()
 Cglucat::gen::generator_table< Matrix_T >Table of generators for specific signatures
 Cnumeric_limits
 Cstd::numeric_limits< glucat::framed_multi< Scalar_T, LO, HI, Tune_P > >Numeric limits for framed_multi inherit limits for the corresponding scalar type
 Cstd::numeric_limits< glucat::matrix_multi< Scalar_T, LO, HI, Tune_P > >Numeric limits for matrix_multi inherit limits for the corresponding scalar type
 Cglucat::numeric_traits< Scalar_T >Extra traits which extend numeric limits
 Cobj
 CPyClical.clifford
 CPyClical.index_set
 Cpade::pade_log_denom< Scalar_T >Coefficients of denominator polynomials of Pade approximations produced by Pade1(log(1+x),x,n,n)
 Cpade::pade_log_denom< dd_real >
 Cpade::pade_log_denom< float >
 Cpade::pade_log_denom< long double >
 Cpade::pade_log_denom< qd_real >
 Cpade::pade_log_numer< Scalar_T >Coefficients of numerator polynomials of Pade approximations produced by Pade1(log(1+x),x,n,n)
 Cpade::pade_log_numer< dd_real >
 Cpade::pade_log_numer< float >
 Cpade::pade_log_numer< long double >
 Cpade::pade_log_numer< qd_real >
 Cpade::pade_sqrt_denom< Scalar_T >Coefficients of denominator polynomials of Pade approximations produced by Pade1(sqrt(1+x),x,n,n)
 Cpade::pade_sqrt_denom< dd_real >
 Cpade::pade_sqrt_denom< float >
 Cpade::pade_sqrt_denom< long double >
 Cpade::pade_sqrt_denom< qd_real >
 Cpade::pade_sqrt_numer< Scalar_T >Coefficients of numerator polynomials of Pade approximations produced by Pade1(sqrt(1+x),x,n,n)
 Cpade::pade_sqrt_numer< dd_real >
 Cpade::pade_sqrt_numer< float >
 Cpade::pade_sqrt_numer< long double >
 Cpade::pade_sqrt_numer< qd_real >
 Cpair
 Cglucat::framed_multi< Scalar_T, LO, HI, Tune_P >::var_termVariable term
 Cglucat::numeric_traits< Scalar_T >::promoted<>Extra traits which extend numeric limits
 Cglucat::random_generator< Scalar_T >Random number generator with single instance per Scalar_T
 Cglucat::index_set< LO, HI >::referenceIndex set member reference
 Cglucat::sorted_range< Map_T, Sorted_Map_T >Sorted range for use with output
 Cglucat::sorted_range< Sorted_Map_T, Sorted_Map_T >
 CtoClifford
 CPyClical.clifford
 CtoIndexSet
 CPyClical.index_set
 Cunordered_map
 Cglucat::framed_multi< Scalar_T, LO, HI, Tune_P >A framed_multi<Scalar_T,LO,HI,Tune_P> is a framed approximation to a multivector