
A light-weight MPI profiler.

mpiP is a light-weight profiling library for MPI applications. Because it only collects statistical
information about MPI functions, mpiP generates considerably less overhead and much less
data than tracing tools. All the information captured by mpiP is task-local. It only uses
communication during report generation, typically at the end of the experiment, to merge results
from all of the tasks into one output file.

The current version of mpiP can be accessed at https://github.com/LLNL/mpiP/releases/latest.

Version 3.5 includes several new features, including

Multi-threaded support
Additional MPI-IO functions
Various updates including

New configuration options and tests
Updated test suite
Updated build behavior

Please see the ChangeLog for additional changes.

mpiP 3.5

Introduction

Downloading

New Features & Bug Fixes

Configuring and Building mpiP

Dependencies

https://github.com/LLNL/mpiP/releases/latest

MPI installation
libunwind : for collecting stack traces.
binutils : for address to source translation
glibc backtrace() can also be usef for stack tracing, but source line numbers may be
inconsistent.

Several specific configuration flags can be using, as provided by ./configure -h .
Standard configure flags, such as CC, can be used for specifying MPI compiler wrapper scripts.

Target Effect

[default] Build libmpiP.so

all Build shared library and all tests

check Use dejagnu to run and evaluate tests

Using mpiP is very simple. Because it gathers MPI information through the MPI profiling layer,
mpiP is a link time library. That is, you don't have to recompile your application to use mpiP. Note
that you might have to recompile to include the '-g' option. This is important if you want mpiP to
decode the PC to a source code filename and line number automatically. mpiP will work without
-g, but mileage may vary.

Link the mpiP library with an executable. The dependent libraries may need to be specified as
well. If the link command includes the MPI library, order the mpiP library before the MPI library,
as in -lmpiP -lmpi .

An uninstrumented executable may able to be instrumented at run time by setting the

Configuration

Build Make Targets

Using mpiP

Instrumentation

Link Time Instrumentation

Run Time Instrumentation

LD_PRELOAD environment variable, as in
export LD_PRELOAD=[path to mpiP]/libmpiP.so . Preloading libmpiP can possibly

interfere with the launcher and may need to be specified on the launch command, such as
srun -n 2 --export=LD_PRELOAD=[path to mpiP]/libmpiP.so [executable] .

The behavior of mpiP can be set at run time through the use of the following flags. Multiple flags
can be delimited with spaces or commas.

mpiP Run Time Flags

Option Description Default

-c
Generate concise version of report, omitting callsite process-
specific detail.

-d Suppress printing of callsite detail sections.

-e Print report data using floating-point format.

-f dir Record output file in directory <dir>. .

-g Enable mpiP debug mode. disabled

-k n Sets callsite stack traceback depth to . 1

-l
Use less memory to generate the report by using MPI collectives to
generate callsite information on a callsite-by-callsite basis.

-n Do not truncate full pathname of filename in callsites.

-o
Disable profiling at initialization. Application must enable profiling
with MPI_Pcontrol().

-p
Point-to-point histogram reporting on message size and
communicator used.

-r Generate the report by aggregating data at a single task. default

-s n Set hash table size to <n>. 256

-t x
Set print threshold for report, where <x> is the MPI percentage of
time for each callsite.

0.0

-v Generates both concise and verbose report output.

-x exe Specify the full path to the executable.

-y
Collective histogram reporting on message size and communicator
used.

-z Suppress printing of the report at MPI_Finalize.

For example, to set the callsite stack walking depth to 2 and the report print threshold to 10%,
you simply need to define the mpiP string in your environment, as in any of the following
examples:

$ export MPIP="-t 10.0 -k 2" (bash)

$ export MPIP=-t10.0,-k2 (bash)

$ setenv MPIP "-t 10.0 -k 2" (csh)

mpiP prints a message at initialization if it successfully finds the MPIP variable.

Header information provides basic information about your performance experiment.

@ mpiP
@ Command : /g/g0/chcham/mpiP/Testing/tests/AMG/./test/amg -P 4 2 2 -n 50
 50 50
@ Version : 3.5.0
@ MPIP Build date : Oct 20 2020, 18:22:06
@ Start time : 2020 10 20 18:25:41
@ Stop time : 2020 10 20 18:25:45
@ Timer Used : PMPI_Wtime
@ MPIP env var : -k3,-y
@ Collector Rank : 0
@ Collector PID : 9164
@ Final Output Dir : .
@ Report generation : Single collector task
@ MPI Task Assignment : 0 surface101
@ MPI Task Assignment : 1 surface101
@ MPI Task Assignment : 2 surface101
@ MPI Task Assignment : 3 surface101

This next section provides an overview of the application's time in MPI. Apptime is the wall-clock
time from the end of MPI_Init until the beginning of MPI_Finalize. MPI_Time is the wall-clock
time for all the MPI calls contained within Apptime. MPI% shows the ratio of this MPI_Time to
Apptime. The asterisk (*) is the aggregate line for the entire application.

mpiP Output

--
@--- MPI Time (seconds) ---
--

--
Task AppTime MPITime MPI%
 0 9.51 0.168 1.76
 1 9.51 0.168 1.76
 2 9.51 0.228 2.40
 3 9.51 0.219 2.31
 * 38.1 0.783 2.06

The callsite section identifies all the MPI callsites within the application. The first number is the
callsite ID for this mpiP file, followed by the stack trace level. The line number, parent function,
and MPI function. Note that the default setting for callsite stack walk depth is 1. The MPIP run
time flag -k can control the number of stack frames per callsite that are provided in the report.

--
@--- Callsites: 211 ---
--

--
 ID Lev File/Address Line Parent_Funct MPI_Call
 1 0 mpistubs.c 1172 hypre_MPI_Allreduce Allreduce
 1 1 timing.c 338 hypre_PrintTiming
 1 2 amg.c 421 main
 2 0 mpistubs.c 1128 hypre_MPI_Testall Testall
 2 1 exchange_data.c 413 hypre_DataExchangeList
 2 2 new_commpkg.c 272 hypre_NewCommPkgCreate_core

The aggregate time section is a quick overview of the top twenty MPI callsites that consume the
most aggregate time in your application. Call identifies the type of MPI function. Site provides
the callsite ID (as listed in the callsite section). Time is the aggregate time for that callsite in
milliseconds. The next two columns show the ratio of that aggregate time to the total application
time and to the total MPI time, respectively. The COV column indicates the variation in times of
individual processes for this callsite by presenting the coefficient of variation as calculated from
the individual process times. A larger value indicates more variation between the process times.

--
@--- Aggregate Time (top twenty, descending, milliseconds) --------------
--

--
Call Site Time App% MPI% Count COV
Isend 25 926 1.45 16.06 71742 0.20
Irecv 55 915 1.43 15.86 71742 0.19
Waitall 186 648 1.01 11.24 7722 0.55
Allreduce 174 346 0.54 6.00 336 0.51
Isend 112 173 0.27 2.99 13332 0.22
Irecv 178 170 0.27 2.95 13332 0.21
Irecv 71 137 0.22 2.38 10802 0.21

The next section is similar to the aggregate time section, although it reports on the top 20
callsites for total sent message sizes.

--
@--- Aggregate Sent Message Size (top twenty, descending, bytes) --------
--

--
Call Site Count Total Avrg Sent%
Isend 25 71742 1.47e+08 2.04e+03 63.34
Isend 112 13332 2.99e+07 2.24e+03 12.91
Isend 155 1068 1.16e+07 1.09e+04 5.02
Isend 84 1530 6.03e+06 3.94e+03 2.60
Isend 47 4126 4.69e+06 1.14e+03 2.03

If collective histograms are enabled (MPIP=-y), the following section provides histogram data for
each collective MPI call, reporting the percent of the total MPI collective time for specific comm
size and data size bins.

--
@--- Aggregate Collective Time (top twenty, descending) -----------------
--

--
Call MPI Time % Comm Size Data Si
ze
Allreduce 0.182 16 - 31 8 -
15
Allreduce 0.0566 16 - 31 0 -
 7
Bcast 0.0155 16 - 31 0 -
 7
Bcast 0.00444 16 - 31 8 -
15

If point-to-point histograms are enabled (MPIP=-p), the following section provides histogram
data for each sending MPI call, reporting the percent of the total MPI point-to-point data sent for
specific comm size and data size bins.

--
@--- Aggregate Point-To-Point Sent (top twenty, descending) -------------
--

--
Call MPI Sent % Comm Size Data Si
ze
Isend 69.5 16 - 31 16384 - 327
67
Isend 10.7 16 - 31 8192 - 163
83
Isend 7.21 16 - 31 1024 - 20
47
Isend 3.84 16 - 31 256 - 5
11
Isend 2.99 16 - 31 512 - 10
23
Isend 1.96 16 - 31 32768 - 655
35

If the final sections have not been suppressed (MPIP=-d), they report the ad nauseum listing of

the statistics for each callsite across all tasks, followed by an aggregate line (indicated by an
asterisk in the Rank column). The first section is for operation time followed by the section for
message sizes.

--
@--- Callsite Time statistics (all, milliseconds): 807 ------------------
--

--
Name Site Rank Count Max Mean Min App% MP
I%
Allreduce 1 0 1 0.0138 0.0138 0.0138 0.00 0.
01
Allreduce 1 1 1 0.0138 0.0138 0.0138 0.00 0.
01
Allreduce 1 2 1 0.0143 0.0143 0.0143 0.00 0.
01
Allreduce 1 3 1 0.013 0.013 0.013 0.00 0.
01
Allreduce 1 * 4 0.0143 0.0137 0.013 0.00 0.
01

All aggregate lines are printed regardless of the configuration settings.

Column Description

Name Name of the MPI function at that callsite.

Site Callsite ID as listed in the callsite section above.

Rank Task rank in MPI_COMM_WORLD.

Count Number of times this call was executed.

Max Maximum wall-clock time for one call.

Mean Arithmetic mean of the wall-clock time for one call.

Min Minimum wall-clock time for one call.

App% Ratio of time for this call to the overall application time for each task.

MPI% Ratio of time for this call to the overall MPI time for each task.

The aggregate result for each call has the same measurement meaning; however, the statistics
are gathered across all tasks and compared with the aggregate application and MPI times.

The section for sent message sizes has a similar format:

--
@--- Callsite Message Sent statistics (all, sent bytes) -----------------
--

--
Name Site Rank Count Max Mean Min S
um
Send 5 0 80 6000 6000 6000 4.8e+
05
Send 5 1 80 6000 6000 6000 4.8e+
05
Send 5 2 80 6000 6000 6000 4.8e+
05
Send 5 3 80 6000 6000 6000 4.8e+
05
Send 5 * 320 6000 6000 6000 1.92e
+06

where

Column Description

Name Name of the MPI function at that callsite.

Site Callsite ID as listed in the callsite section above.

Rank Task rank in MPI_COMM_WORLD.

Count Number of times this call was executed.

Max Maximum sent message size in bytes for one call.

Mean Arithmetic mean of the sent message sizes in bytes for one call.

Min Minimum sent message size in bytes for one call.

Sum Total of all message sizes for this operation and callsite.

The format of MPI I/O report section is very similar to the sent message sizes section:

--
@--- Callsite I/O statistics (all, I/O bytes) ---------------------------
--

--
Name Site Rank Count Max Mean Min S
um
File_read 1 0 20 64 64 64 12
80
File_read 1 1 20 64 64 64 12
80
File_read 1 * 40 64 64 64 25
60

In mpiP, you can limit the scope of profiling measurements to specific regions of your code using
the MPI_Pcontrol(int level) subroutine. A value of zero disables mpiP profiling, while any
nonzero value enables profiling. To disable profiling initially at MPI_Init, use the -o configuration
option. mpiP will only record information about MPI commands encountered between activation
and deactivation. There is no limit to the number to times that an application can activate
profiling during execution.

For example, in your application you can capture the MPI activity for timestep 5 only using
Pcontrol. Remember to set the mpiP environment variable to include -o when using this feature.

for(i=1; i < 10; i++)
{
 switch(i)
 {
 case 5:
 MPI_Pcontrol(1);
 break;
 case 6:
 MPI_Pcontrol(0);
 break;
 default:
 break;
 }
 /* ... compute and communicate for one timestep ... */
}

Controlling Profiling Scope

You can also generate arbitrary reports by making calls to MPIPcontrol()with an argument of 3 or
4 (see table below). The first report generated will have the default report filename. Subsequent
report files will have an index number included, such as sweep3d.mpi.4.7371.1.mpiP,
sweep3d.mpi.4.7371.2.mpiP,etc. The final report will still be generated during MPIFinalize.
NOTE: In the current release, callsite IDs will not be consistent between reports. Comparison of
callsite data between reports must be done by source location and callstack.

MPI_Pcontrol features should be fully functional for C/C++ as well as Fortran.

Pcontrol Argument Behavior

0 Disable profiling

1 Enable Profiling

2 Reset all callsite data

3 Generate verbose report

4 Generate concise report

If you want to generate individual reports each time a section of code is executed, but don't want
the profile data to accumulate, you can specify code to reset the profile data, profile, and then
generate reports. For example:

Arbitrary Report Generation

for(i=1; i < 10; i++)
{
 switch(i)
 {
 case 5:
 MPI_Pcontrol(2); // make sure profile data is reset
 MPI_Pcontrol(1); // enable profiling
 break;
 case 6:
 MPI_Pcontrol(3); // generate verbose report
 MPI_Pcontrol(4); // generate concise report
 MPI_Pcontrol(0); // disable profiling
 break;
 default:
 break;
 }
 /* ... compute and communicate for one timestep ... */

MPI_Accumulate
MPI_Allgather
MPI_Allgatherv
MPI_Allreduce
MPI_Alltoall
MPI_Alltoallv
MPI_Barrier
MPI_Bcast
MPI_Bsend
MPI_Bsend_init
MPI_Buffer_attach
MPI_Buffer_detach
MPI_Cancel
MPI_Cart_coords
MPI_Cart_create
MPI_Cart_get
MPI_Cart_map
MPI_Cart_rank
MPI_Cart_shift
MPI_Cart_sub
MPI_Cartdim_get
MPI_Comm_compare
MPI_Comm_create

MPI Routines Profiled with mpiP

MPI_Comm_create_errhandler
MPI_Comm_create_keyval
MPI_Comm_delete_attr
MPI_Comm_dup
MPI_Comm_free
MPI_Comm_free_keyval
MPI_Comm_get_attr
MPI_Comm_get_errhandler
MPI_Comm_group
MPI_Comm_rank
MPI_Comm_remote_group
MPI_Comm_remote_size
MPI_Comm_set_attr
MPI_Comm_set_errhandler
MPI_Comm_size
MPI_Comm_split
MPI_Comm_test_inter
MPI_Compare_and_swap
MPI_Dims_create
MPI_Errhandler_free
MPI_Error_class
MPI_Error_string
MPI_Fetch_and_op
MPI_File_close
MPI_File_delete
MPI_File_get_amode
MPI_File_get_byte_offset
MPI_File_get_group
MPI_File_get_info
MPI_File_get_position
MPI_File_get_size
MPI_File_get_view
MPI_File_open
MPI_File_preallocate
MPI_File_read
MPI_File_read_all
MPI_File_read_at
MPI_File_read_at_all
MPI_File_seek
MPI_File_set_info
MPI_File_set_size
MPI_File_set_view
MPI_File_sync
MPI_File_write
MPI_File_write_all

MPI_File_write_at
MPI_File_write_at_all
MPI_Finalize
MPI_Finalized
MPI_Gather
MPI_Gatherv
MPI_Get
MPI_Get_accumulate
MPI_Get_address
MPI_Get_count
MPI_Get_elements
MPI_Get_processor_name
MPI_Get_version
MPI_Graph_create
MPI_Graph_get
MPI_Graph_map
MPI_Graph_neighbors
MPI_Graph_neighbors_count
MPI_Graphdims_get
MPI_Group_compare
MPI_Group_difference
MPI_Group_excl
MPI_Group_free
MPI_Group_incl
MPI_Group_intersection
MPI_Group_range_excl
MPI_Group_range_incl
MPI_Group_rank
MPI_Group_size
MPI_Group_translate_ranks
MPI_Group_union
MPI_Iallgather
MPI_Iallgatherv
MPI_Iallreduce
MPI_Ialltoall
MPI_Ialltoallv
MPI_Ialltoallw
MPI_Ibarrier
MPI_Ibcast
MPI_Ibsend
MPI_Iexscan
MPI_Igather
MPI_Igatherv
MPI_Init
MPI_Init_thread

MPI_Initialized
MPI_Intercomm_create
MPI_Intercomm_merge
MPI_Iprobe
MPI_Irecv
MPI_Ireduce
MPI_Ireduce_scatter
MPI_Ireduce_scatter_block
MPI_Irsend
MPI_Iscan
MPI_Iscatter
MPI_Iscatterv
MPI_Isend
MPI_Issend
MPI_Op_create
MPI_Op_free
MPI_Pack
MPI_Pack_size
MPI_Probe
MPI_Put
MPI_Raccumulate
MPI_Recv
MPI_Recv_init
MPI_Reduce
MPI_Reduce_scatter
MPI_Request_free
MPI_Rget
MPI_Rget_accumulate
MPI_Rput
MPI_Rsend
MPI_Rsend_init
MPI_Scan
MPI_Scatter
MPI_Scatterv
MPI_Send
MPI_Send_init
MPI_Sendrecv
MPI_Sendrecv_replace
MPI_Ssend
MPI_Ssend_init
MPI_Start
MPI_Startall
MPI_Test
MPI_Test_cancelled
MPI_Testall

MPI_Testany
MPI_Testsome
MPI_Topo_test
MPI_Type_commit
MPI_Type_contiguous
MPI_Type_count
MPI_Type_create_darray
MPI_Type_create_hindexed
MPI_Type_create_hvector
MPI_Type_create_indexed_block
MPI_Type_create_struct
MPI_Type_create_subarray
MPI_Type_free
MPI_Type_get_contents
MPI_Type_get_envelope
MPI_Type_get_extent
MPI_Type_indexed
MPI_Type_size
MPI_Type_vector
MPI_Unpack
MPI_Wait
MPI_Waitall
MPI_Waitany
MPI_Waitsome
MPI_Win_allocate
MPI_Win_allocate_shared
MPI_Win_attach
MPI_Win_complete
MPI_Win_create
MPI_Win_create_dynamic
MPI_Win_detach
MPI_Win_fence
MPI_Win_flush
MPI_Win_flush_all
MPI_Win_flush_local
MPI_Win_flush_local_all
MPI_Win_free
MPI_Win_get_group
MPI_Win_get_info
MPI_Win_lock
MPI_Win_lock_all
MPI_Win_post
MPI_Win_set_info
MPI_Win_shared_query
MPI_Win_start

MPI_Win_sync
MPI_Win_test
MPI_Win_unlock
MPI_Win_unlock_all
MPI_Win_wait
MPI_Wtick
MPI_Wtime

Bug fixes and ports to new platforms are always welcome. Many thanks to the following
contributors (chronological order):

Jeffrey Vetter (Oak Ridge National Laboratory)
Michael McCracken (UCSD)
Chris Chambreau (Lawrence Livermore National Laboratory)
Curt Janssen (Sandia National Laboratories)
Mike Campbell (UIUC)
Jim Brandt (Sandia National Laboratories)
Philip Roth (Oak Ridge National Laboratory)
Tushar Mohan (SiCortex)
Philip Mucci (SiCortex)
Karl Schulz (Texas Advanced Computing Center)
Jeff Hammond (Intel)
Artem Polyakov (Mellanox)
Greg Lee (Lawrence Livermore National Laboratory)
Rob Latham
Josh Milthorpe (Australian National University Research School of Computer Science)

Copyright (c) 2006, The Regents of the University of California. Produced at the Lawrence
Livermore National Laboratory Written by Jeffery Vetter and Christopher Chambreau. UCRL-
CODE-223450. All rights reserved.

This file is part of mpiP. For details, see http://llnl.github.io/mpiP.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

Contributors

License

Redistributions of source code must retain the above copyright notice, this list of conditions
and the disclaimer below.

Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the disclaimer (as noted below) in the documentation and/or other materials
provided with the distribution.

Neither the name of the UC/LLNL nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE
UNIVERSITY OF CALIFORNIA, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Additional BSD Notice

1. This notice is required to be provided under our contract with the U.S. Department of
Energy (DOE). This work was produced at the University of California, Lawrence Livermore
National Laboratory under Contract No. W-7405-ENG-48 with the DOE.

2. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately-owned
rights.

3. Also, reference herein to any specific commercial products, process, or services by trade
name, trademark, manufacturer or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of
California, and shall not be used for advertising or product endorsement purposes.

