
ZODB/ZEO Programming Guide
Release 3.3.1

A.M. Kuchling

April 14, 2005

amk@amk.ca

Contents

1 Introduction 2
1.1 What is the ZODB?. 2
1.2 OODBs vs. Relational DBs. 3
1.3 What is ZEO?. 4
1.4 About this guide. 4
1.5 Acknowledgements. 4

2 ZODB Programming 5
2.1 Installing ZODB . 5

Requirements. 5
Installing the Packages. 5

2.2 How ZODB Works . 5
2.3 Opening a ZODB. 6
2.4 Using a ZODB Configuration File. 6
2.5 Writing a Persistent Class. 7
2.6 Rules for Writing Persistent Classes. 8

Modifying Mutable Objects. 9
__getattr__ , __delattr__ , and__setattr__ . 9
__del__ methods . 10

2.7 Writing Persistent Classes. 10
Changing Instance Attributes. 10

3 ZEO 11
3.1 How ZEO Works . 11
3.2 Installing ZEO . 11

Requirements. 12
Running a server . 12

3.3 Testing the ZEO Installation. 12
3.4 ZEO Programming Notes. 13
3.5 Sample Application: chatter.py. 13

4 Transactions and Versioning 15
4.1 Committing and Aborting. 15
4.2 Subtransactions. 15
4.3 Undoing Changes. 16
4.4 Versions. 16

4.5 Multithreaded ZODB Programs. 17

5 Related Modules 17
5.1 persistent.mapping.PersistentMapping . 17
5.2 persistent.list.PersistentList . 18
5.3 BTrees Package. 18

Total Ordering and Persistence. 20
Iteration and Mutation . 22
BTree Diagnostic Tools. 23

A Resources 23

B GNU Free Documentation License 24
B.1 Applicability and Definitions. 24
B.2 Verbatim Copying. 25
B.3 Copying in Quantity . 25
B.4 Modifications . 25
B.5 Combining Documents. 27
B.6 Collections of Documents. 27
B.7 Aggregation With Independent Works. 27
B.8 Translation . 27
B.9 Termination . 27
B.10 Future Revisions of This Licence. 28

c©Copyright 2002 A.M. Kuchling. Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the appendix entitled “GNU Free Documentation License”.

1 Introduction

This guide explains how to write Python programs that use the Z Object Database (ZODB) and Zope Enterprise Objects
(ZEO). The latest version of the guide is always available athttp://www.zope.org/Wikis/ZODB/guide/index.html.

1.1 What is the ZODB?

The ZODB is a persistence system for Python objects. Persistent programming languages provide facilities that auto-
matically write objects to disk and read them in again when they’re required by a running program. By installing the
ZODB, you add such facilities to Python.

It’s certainly possible to build your own system for making Python objects persistent. The usual starting points are the
pickle module, for converting objects into a string representation, and various database modules, such as thegdbm
or bsddb modules, that provide ways to write strings to disk and read them back. It’s straightforward to combine the
pickle module and a database module to store and retrieve objects, and in fact theshelve module, included in
Python’s standard library, does this.

The downside is that the programmer has to explicitly manage objects, reading an object when it’s needed and writing
it out to disk when the object is no longer required. The ZODB manages objects for you, keeping them in a cache,
writing them out to disk when they are modified, and dropping them from the cache if they haven’t been used in a
while.

2 1 Introduction

1.2 OODBs vs. Relational DBs

Another way to look at it is that the ZODB is a Python-specific object-oriented database (OODB). Commercial object
databases for C++ or Java often require that you jump through some hoops, such as using a special preprocessor or
avoiding certain data types. As we’ll see, the ZODB has some hoops of its own to jump through, but in comparison
the naturalness of the ZODB is astonishing.

Relational databases (RDBs) are far more common than OODBs. Relational databases store information in tables; a
table consists of any number of rows, each row containing several columns of information. (Rows are more formally
called relations, which is where the term “relational database” originates.)

Let’s look at a concrete example. The example comes from my day job working for the MEMS Exchange, in a
greatly simplified version. The job is to track process runs, which are lists of manufacturing steps to be performed
in a semiconductor fab. A run is owned by a particular user, and has a name and assigned ID number. Runs consist
of a number of operations; an operation is a single step to be performed, such as depositing something on a wafer or
etching something off it.

Operations may have parameters, which are additional information required to perform an operation. For example, if
you’re depositing something on a wafer, you need to know two things: 1) what you’re depositing, and 2) how much
should be deposited. You might deposit 100 microns of silicon oxide, or 1 micron of copper.

Mapping these structures to a relational database is straightforward:

CREATE TABLE runs (
int run_id,
varchar owner,
varchar title,
int acct_num,
primary key(run_id)

);

CREATE TABLE operations (
int run_id,
int step_num,
varchar process_id,
PRIMARY KEY(run_id, step_num),
FOREIGN KEY(run_id) REFERENCES runs(run_id),

);

CREATE TABLE parameters (
int run_id,
int step_num,
varchar param_name,
varchar param_value,
PRIMARY KEY(run_id, step_num, param_name)
FOREIGN KEY(run_id, step_num)

REFERENCES operations(run_id, step_num),
);

In Python, you would write three classes namedRun, Operation , andParameter . I won’t present code for
defining these classes, since that code is uninteresting at this point. Each class would contain a single method to begin
with, an__init__ method that assigns default values, such as 0 orNone, to each attribute of the class.

It’s not difficult to write Python code that will create aRun instance and populate it with the data from the relational
tables; with a little more effort, you can build a straightforward tool, usually called an object-relational mapper, to
do this automatically. (Seehttp://www.amk.ca/python/unmaintained/ordb.html for a quick hack at a Python object-
relational mapper, andhttp://www.python.org/workshops/1997-10/proceedings/shprentz.html for Joel Shprentz’s more

1.2 OODBs vs. Relational DBs 3

successful implementation of the same idea; Unlike mine, Shprentz’s system has been used for actual work.)

However, it is difficult to make an object-relational mapper reasonably quick; a simple-minded implementation like
mine is quite slow because it has to do several queries to access all of an object’s data. Higher performance object-
relational mappers cache objects to improve performance, only performing SQL queries when they actually need to.

That helps if you want to access run number 123 all of a sudden. But what if you want to find all runs where a step
has a parameter named ’thickness’ with a value of 2.0? In the relational version, you have two unappealing choices:

1. Write a specialized SQL query for this case:SELECT run_id FROM operations WHERE param_-
name = ’thickness’ AND param_value = 2.0

If such queries are common, you can end up with lots of specialized queries. When the database tables get
rearranged, all these queries will need to be modified.

2. An object-relational mapper doesn’t help much. Scanning through the runs means that the the mapper will
perform the required SQL queries to read run #1, and then a simple Python loop can check whether any of its
steps have the parameter you’re looking for. Repeat for run #2, 3, and so forth. This does a vast number of SQL
queries, and therefore is incredibly slow.

An object database such as ZODB simply stores internal pointers from object to object, so reading in a single object
is much faster than doing a bunch of SQL queries and assembling the results. Scanning all runs, therefore, is still
inefficient, but not grossly inefficient.

1.3 What is ZEO?

The ZODB comes with a few different classes that implement theStorage interface. Such classes handle the job
of writing out Python objects to a physical storage medium, which can be a disk file (theFileStorage class), a
BerkeleyDB file (BDBFullStorage), a relational database (DCOracleStorage), or some other medium. ZEO
addsClientStorage , a newStorage that doesn’t write to physical media but just forwards all requests across a
network to a server. The server, which is running an instance of theStorageServer class, simply acts as a front-
end for some physicalStorage class. It’s a fairly simple idea, but as we’ll see later on in this document, it opens up
many possibilities.

1.4 About this guide

The primary author of this guide works on a project which uses the ZODB and ZEO as its primary storage technology.
We use the ZODB to store process runs and operations, a catalog of available processes, user information, accounting
information, and other data. Part of the goal of writing this document is to make our experience more widely available.
A few times we’ve spent hours or even days trying to figure out a problem, and this guide is an attempt to gather up
the knowledge we’ve gained so that others don’t have to make the same mistakes we did while learning.

The author’s ZODB project is described in a paper available here,http://www.amk.ca/python/writing/mx-architecture/

This document will always be a work in progress. If you wish to suggest clarifications or additional topics, please send
your comments tozodb-dev@zope.org.

1.5 Acknowledgements

Andrew Kuchling wrote the original version of this guide, which provided some of the first ZODB documentation for
Python programmers. His initial version has been updated over time by Jeremy Hylton and Tim Peters.

I’d like to thank the people who’ve pointed out inaccuracies and bugs, offered suggestions on the text, or proposed new
topics that should be covered: Jeff Bauer, Willem Broekema, Thomas Guettler, Chris McDonough, George Runyan.

4 1 Introduction

2 ZODB Programming

2.1 Installing ZODB

ZODB is packaged using the standard distutils tools.

Requirements

You will need Python 2.3 or higher. Since the code is packaged using distutils, it is simply a matter of untarring or
unzipping the release package, and then runningpython setup.py install .

You’ll need a C compiler to build the packages, because there are various C extension modules. Binary installers are
provided for Windows users.

Installing the Packages

Download the ZODB tarball containing all the packages for both ZODB and ZEO from
http://www.zope.org/Products/ZODB3.3. See the ‘README.txt’ file in the top level of the release directory for
details on building, testing, and installing.

You can find information about ZODB and the most current releases in the ZODB Wiki at
http://www.zope.org/Wikis/ZODB.

2.2 How ZODB Works

The ZODB is conceptually simple. Python classes subclass apersistent.Persistent class to become ZODB-
aware. Instances of persistent objects are brought in from a permanent storage medium, such as a disk file, when the
program needs them, and remain cached in RAM. The ZODB traps modifications to objects, so that when a statement
such asobj.size = 1 is executed, the modified object is marked as “dirty.” On request, any dirty objects are
written out to permanent storage; this is called committing a transaction. Transactions can also be aborted or rolled
back, which results in any changes being discarded, dirty objects reverting to their initial state before the transaction
began.

The term “transaction” has a specific technical meaning in computer science. It’s extremely important that the contents
of a database don’t get corrupted by software or hardware crashes, and most database software offers protection against
such corruption by supporting four useful properties, Atomicity, Consistency, Isolation, and Durability. In computer
science jargon these four terms are collectively dubbed the ACID properties, forming an acronym from their names.

The ZODB provides all of the ACID properties. Definitions of the ACID properties are:

Atomicity means that any changes to data made during a transaction are all-or-nothing. Either all the changes are applied,
or none of them are. If a program makes a bunch of modifications and then crashes, the database won’t be
partially modified, potentially leaving the data in an inconsistent state; instead all the changes will be forgotten.
That’s bad, but it’s better than having a partially-applied modification put the database into an inconsistent state.

Consistency means that each transaction executes a valid transformation of the database state. Some databases, but not
ZODB, provide a variety of consistency checks in the database or language; for example, a relational database
constraint columns to be of particular types and can enforce relations across tables. Viewed more generally,
atomicity and isolation make it possible for applications to provide consistency.

Isolation means that two programs or threads running in two different transactions cannot see each other’s changes until
they commit their transactions.

Durability means that once a transaction has been committed, a subsequent crash will not cause any data to be lost or
corrupted.

5

2.3 Opening a ZODB

There are 3 main interfaces supplied by the ZODB:Storage , DB, and Connection classes. TheDB and
Connection interfaces both have single implementations, but there are several different classes that implement
theStorage interface.

• Storage classes are the lowest layer, and handle storing and retrieving objects from some form of long-term
storage. A few different types of Storage have been written, such asFileStorage , which uses regular disk
files, andBDBFullStorage , which uses Sleepycat Software’s BerkeleyDB database. You could write a new
Storage that stored objects in a relational database, for example, if that would better suit your application. Two
example storages,DemoStorage andMappingStorage , are available to use as models if you want to write
a new Storage.

• TheDBclass sits on top of a storage, and mediates the interaction between several connections. OneDBinstance
is created per process.

• Finally, the Connection class caches objects, and moves them into and out of object storage. A multi-
threaded program should open a separateConnection instance for each thread. Different threads can then
modify objects and commit their modifications independently.

Preparing to use a ZODB requires 3 steps: you have to open theStorage , then create aDB instance that uses the
Storage , and then get aConnection from theDB instance . All this is only a few lines of code:

from ZODB import FileStorage, DB

storage = FileStorage.FileStorage(’/tmp/test-filestorage.fs’)
db = DB(storage)
conn = db.open()

Note that you can use a completely different data storage mechanism by changing the first line that opens aStorage ;
the above example uses aFileStorage . In section 3, “How ZEO Works”, you’ll see how ZEO uses this flexibility
to good effect.

2.4 Using a ZODB Configuration File

ZODB also supports configuration files written in the ZConfig format. A configuration file can be used to separate
the configuration logic from the application logic. The storages classes and theDBclass support a variety of keyword
arguments; all these options can be specified in a config file.

The configuration file is simple. The example in the previous section could use the following example:

<zodb>
<filestorage>
path /tmp/test-filestorage.fs
</filestorage>

</zodb>

TheZODB.config module includes several functions for opening database and storages from configuration files.

6 2 ZODB Programming

import ZODB.config

db = ZODB.config.databaseFromURL(’/tmp/test.conf’)
conn = db.open()

The ZConfig documentation, included in the ZODB3 release, explains the format in detail. Each configuration file is
described by a schema, by convention stored in a ‘component.xml’ file. ZODB, ZEO, zLOG, and zdaemon all have
schemas.

2.5 Writing a Persistent Class

Making a Python class persistent is quite simple; it simply needs to subclass from thePersistent class, as shown
in this example:

from persistent import Persistent

class User(Persistent):
pass

ThePersistent base class is a new-style class implemented in C.

For simplicity, in the examples theUser class will simply be used as a holder for a bunch of attributes. Normally
the class would define various methods that add functionality, but that has no impact on the ZODB’s treatment of the
class.

The ZODB uses persistence by reachability; starting from a set of root objects, all the attributes of those objects are
made persistent, whether they’re simple Python data types or class instances. There’s no method to explicitly store
objects in a ZODB database; simply assign them as an attribute of an object, or store them in a mapping, that’s already
in the database. This chain of containment must eventually reach back to the root object of the database.

As an example, we’ll create a simple database of users that allows retrieving aUser object given the user’s ID. First,
we retrieve the primary root object of the ZODB using theroot() method of theConnection instance. The root
object behaves like a Python dictionary, so you can just add a new key/value pair for your application’s root object.
We’ll insert anOOBTree object that will contain all theUser objects. (TheBTree module is also included as part
of Zope.)

dbroot = conn.root()

Ensure that a ’userdb’ key is present
in the root
if not dbroot.has_key(’userdb’):

from BTrees.OOBTree import OOBTree
dbroot[’userdb’] = OOBTree()

userdb = dbroot[’userdb’]

Inserting a new user is simple: create theUser object, fill it with data, insert it into theBTree instance, and commit
this transaction.

2.5 Writing a Persistent Class 7

Create new User instance
import transaction

newuser = User()

Add whatever attributes you want to track
newuser.id = ’amk’
newuser.first_name = ’Andrew’ ; newuser.last_name = ’Kuchling’
...

Add object to the BTree, keyed on the ID
userdb[newuser.id] = newuser

Commit the change
transaction.commit()

The transaction module defines a few top-level functions for working with transactions.commit() writes any
modified objects to disk, making the changes permanent.abort() rolls back any changes that have been made,
restoring the original state of the objects. If you’re familiar with database transactional semantics, this is all what
you’d expect.get() returns aTransaction object that has additional methods likenote() , to add a note to the
transaction metadata.

More precisely, thetransaction module exposes an instance of theThreadTransactionManager transac-
tion manager class astransaction.manager , and thetransaction functionsget() andbegin() redirect
to the same-named methods oftransaction.manager . The commit() and abort() functions apply the
methods of the same names to theTransaction object returned bytransaction.manager.get() . This is
for convenience. It’s also possible to create your own transaction manager instances, and to tellDB.open() to use
your transaction manager instead.

Because the integration with Python is so complete, it’s a lot like having transactional semantics for your program’s
variables, and you can experiment with transactions at the Python interpreter’s prompt:

>>> newuser
<User instance at 81b1f40>
>>> newuser.first_name # Print initial value
’Andrew’
>>> newuser.first_name = ’Bob’ # Change first name
>>> newuser.first_name # Verify the change
’Bob’
>>> transaction.abort() # Abort transaction
>>> newuser.first_name # The value has changed back
’Andrew’

2.6 Rules for Writing Persistent Classes

Practically all persistent languages impose some restrictions on programming style, warning against constructs they
can’t handle or adding subtle semantic changes, and the ZODB is no exception. Happily, the ZODB’s restrictions are
fairly simple to understand, and in practice it isn’t too painful to work around them.

The summary of rules is as follows:

• If you modify a mutable object that’s the value of an object’s attribute, the ZODB can’t catch that, and won’t
mark the object as dirty. The solution is to either set the dirty bit yourself when you modify mutable objects, or
use a wrapper for Python’s lists and dictionaries (PersistentList , PersistentMapping) that will set
the dirty bit properly.

8 2 ZODB Programming

• Recent versions of the ZODB allow writing a class with__setattr__ , __getattr__ , or __delattr_-
_ methods. (Older versions didn’t support this at all.) If you write such a__setattr__ or __delattr__-
method, its code has to set the dirty bit manually.

• A persistent class should not have a__del__ method. The database moves objects freely between memory
and storage. If an object has not been used in a while, it may be released and its contents loaded from storage
the next time it is used. Since the Python interpreter is unaware of persistence, it would call__del__ each
time the object was freed.

Let’s look at each of these rules in detail.

Modifying Mutable Objects

The ZODB uses various Python hooks to catch attribute accesses, and can trap most of the ways of modifying an object,
but not all of them. If you modify aUser object by assigning to one of its attributes, as inuserobj.first_name
= ’Andrew’ , the ZODB will mark the object as having been changed, and it’ll be written out on the following
commit() .

The most common idiom thatisn’t caught by the ZODB is mutating a list or dictionary. IfUser objects have a attribute
namedfriends containing a list, callinguserobj.friends.append(otherUser) doesn’t markuserobj
as modified; from the ZODB’s point of view,userobj.friends was only read, and its value, which happened to
be an ordinary Python list, was returned. The ZODB isn’t aware that the object returned was subsequently modified.

This is one of the few quirks you’ll have to remember when using the ZODB; if you modify a mutable attribute of an
object in place, you have to manually mark the object as having been modified by setting its dirty bit to true. This is
done by setting the_p_changed attribute of the object to true:

userobj.friends.append(otherUser)
userobj._p_changed = True

You can hide the implementation detail of having to mark objects as dirty by designing your class’s API to not use
direct attribute access; instead, you can use the Java-style approach of accessor methods for everything, and then set
the dirty bit within the accessor method. For example, you might forbid accessing thefriends attribute directly, and
add aget_friend_list() accessor and anadd_friend() modifier method to the class.add_friend()
would then look like this:

def add_friend(self, friend):
self.friends.append(otherUser)
self._p_changed = True

Alternatively, you could use a ZODB-aware list or mapping type that handles the dirty bit for you. The ZODB comes
with a PersistentMapping class, and I’ve contributed aPersistentList class that’s included in my ZODB
distribution, and may make it into a future upstream release of Zope.

__getattr__ , __delattr__ , and __setattr__

ZODB allows persistent classes to have hook methods like__getattr__ and __setattr__ . There are four
special methods that control attribute access; the rules for each are a little different.

The__getattr__ method works pretty much the same for persistent classes as it does for other classes. No special
handling is needed. If an object is a ghost, then it will be activated before__getattr__ is called.

2.6 Rules for Writing Persistent Classes 9

The other methods are more delicate. They will override the hooks provided byPersistent , so user code must call
special methods to invoke those hooks anyway.

The __getattribute__ method will be called for all attribute access; it overrides the attribute access support
inherited fromPersistent . A user-defined__getattribute__ must always give thePersistent base class
a chance to handle special attribute, as well as__dict__ or __class__ . The user code should call_p_getattr ,
passing the name of the attribute as the only argument. If it returns True, the user code should callPersistent ’s
__getattribute__ to get the value. If not, the custom user code can run.

A __setattr__ hook will also override thePersistent __setattr__ hook. User code must treat it much like
__getattribute__ . The user-defined code must call_p_setattr first to all Persistent to handle special
attributes;_p_setattr takes the attribute name and value. If it returns True,Persistent handled the attribute.
If not, the user code can run. If the user code modifies the object’s state, it must assigned to_p_changed .

A __delattr__ hooks must be implemented the same was as a the last two hooks. The user code must call_-
p_delattr , passing the name of the attribute as an argument. If the call returns True,Persistent handled the
attribute; if not, the user code can run.

__del__ methods

A __del__ method is invoked just before the memory occupied by an unreferenced Python object is freed. Because
ZODB may materialize, and dematerialize, a given persistent object in memory any number of times, there isn’t a
meaningful relationship between when a persistent object’s__del__ method gets invoked and any natural aspect
of a persistent object’s life cycle. For example, it is emphatically not the case that a persistent object’s__del__-
method gets invoked only when the object is no longer referenced by other objects in the database.__del__ is only
concerned with reachability from objects in memory.

Worse, a__del__ method can interfere with the persistence machinery’s goals. For example, some number of
persistent objects reside in aConnection ’s memory cache. At various times, to reduce memory burden, objects that
haven’t been referenced recently are removed from the cache. If a persistent object with a__del___ method is so
removed, and the cache was holding the last memory reference to the object, the object’s__del__ method will be
invoked. If the__del__ method then references any attribute of the object, ZODB needs to load the object from the
database again, in order to satisfy the attribute reference. This puts the object back into the cache again: such an object
is effectively immortal, occupying space in the memory cache forever, as every attempt to remove it from cache puts
it back into the cache. In ZODB versions prior to 3.2.2, this could even cause the cache reduction code to fall into an
infinite loop. The infinite loop no longer occurs, but such objects continue to live in the memory cache forever.

Because__del__ methods don’t make good sense for persistent objects, and can create problems, persistent classes
should not define__del__ methods.

2.7 Writing Persistent Classes

Now that we’ve looked at the basics of programming using the ZODB, we’ll turn to some more subtle tasks that are
likely to come up for anyone using the ZODB in a production system.

Changing Instance Attributes

Ideally, before making a class persistent you would get its interface right the first time, so that no attributes would ever
need to be added, removed, or have their interpretation change over time. It’s a worthy goal, but also an impractical
one unless you’re gifted with perfect knowledge of the future. Such unnatural foresight can’t be required of any
person, so you therefore have to be prepared to handle such structural changes gracefully. In object-oriented database
terminology, this is a schema update. The ZODB doesn’t have an actual schema specification, but you’re changing the
software’s expectations of the data contained by an object, so you’re implicitly changing the schema.

One way to handle such a change is to write a one-time conversion program that will loop over every single object in

10 2 ZODB Programming

the database and update them to match the new schema. This can be easy if your network of object references is quite
structured, making it easy to find all the instances of the class being modified. For example, if allUser objects can be
found inside a single dictionary or BTree, then it would be a simple matter to loop over everyUser instance with a
for statement. This is more difficult if your object graph is less structured; ifUser objects can be found as attributes
of any number of different class instances, then there’s no longer any easy way to find them all, short of writing a
generalized object traversal function that would walk over every single object in a ZODB, checking each one to see if
it’s an instance ofUser .

Some OODBs support a feature called extents, which allow quickly finding all the instances of a given class, no matter
where they are in the object graph; unfortunately the ZODB doesn’t offer extents as a feature.

3 ZEO

3.1 How ZEO Works

The ZODB, as I’ve described it so far, can only be used within a single Python process (though perhaps with multiple
threads). ZEO, Zope Enterprise Objects, extends the ZODB machinery to provide access to objects over a network.
The name ”Zope Enterprise Objects” is a bit misleading; ZEO can be used to store Python objects and access them
in a distributed fashion without Zope ever entering the picture. The combination of ZEO and ZODB is essentially a
Python-specific object database.

ZEO consists of about 12,000 lines of Python code, excluding tests. The code is relatively small because it contains
only code for a TCP/IP server, and for a new type of Storage,ClientStorage . ClientStorage simply makes
remote procedure calls to the server, which then passes them on a regularStorage class such asFileStorage .
The following diagram lays out the system:

XXX insert diagram here later

Any number of processes can create aClientStorage instance, and any number of threads in each process can be
using that instance.ClientStorage aggressively caches objects locally, so in order to avoid using stale data the
ZEO server sends an invalidation message to all the connectedClientStorage instances on every write operation.
The invalidation message contains the object ID for each object that’s been modified, letting theClientStorage
instances delete the old data for the given object from their caches.

This design decision has some consequences you should be aware of. First, while ZEO isn’t tied to Zope, it was first
written for use with Zope, which stores HTML, images, and program code in the database. As a result, reads from
the database arefar more frequent than writes, and ZEO is therefore better suited for read-intensive applications. If
everyClientStorage is writing to the database all the time, this will result in a storm of invalidate messages being
sent, and this might take up more processing time than the actual database operations themselves. These messages are
small and sent in batches, so there would need to be a lot of writes before it became a problem.

On the other hand, for applications that have few writes in comparison to the number of read accesses, this aggres-
sive caching can be a major win. Consider a Slashdot-like discussion forum that divides the load among several
Web servers. If news items and postings are represented by objects and accessed through ZEO, then the most heav-
ily accessed objects – the most recent or most popular postings – will very quickly wind up in the caches of the
ClientStorage instances on the front-end servers. The back-end ZEO server will do relatively little work, only
being called upon to return the occasional older posting that’s requested, and to send the occasional invalidate message
when a new posting is added. The ZEO server isn’t going to be contacted for every single request, so its workload will
remain manageable.

3.2 Installing ZEO

This section covers how to install the ZEO package, and how to configure and run a ZEO Storage Server on a machine.

11

Requirements

The ZEO server software is included in ZODB3. As with the rest of ZODB3, you’ll need Python 2.3 or higher.

Running a server

The runzeo.py script in the ZEO directory can be used to start a server. Run it with the -h option to see the various
values. If you’re just experimenting, a good choise is to usepython ZEO/runzeo.py -a /tmp/zeosocket
-f /tmp/test.fs to run ZEO with a Unix domain socket and aFileStorage .

3.3 Testing the ZEO Installation

Once a ZEO server is up and running, using it is just like using ZODB with a more conventional disk-based storage;
no new programming details are introduced by using a remote server. The only difference is that programs must create
a ClientStorage instance instead of aFileStorage instance. From that point onward, ZODB-based code is
happily unaware that objects are being retrieved from a ZEO server, and not from the local disk.

As an example, and to test whether ZEO is working correctly, try running the following lines of code, which will
connect to the server, add some bits of data to the root of the ZODB, and commits the transaction:

from ZEO import ClientStorage
from ZODB import DB
import transaction

Change next line to connect to your ZEO server
addr = ’kronos.example.com’, 1975
storage = ClientStorage.ClientStorage(addr)
db = DB(storage)
conn = db.open()
root = conn.root()

Store some things in the root
root[’list’] = [’a’, ’b’, 1.0, 3]
root[’dict’] = {’a’:1, ’b’:4}

Commit the transaction
transaction.commit()

If this code runs properly, then your ZEO server is working correctly.

You can also use a configuration file.

<zodb>
<zeoclient>
server localhost:9100
</zeoclient>

</zodb>

One nice feature of the configuration file is that you don’t need to specify imports for a specific storage. That makes
the code a little shorter and allows you to change storages without changing the code.

12 3 ZEO

import ZODB.config

db = ZODB.config.databaseFromURL(’/tmp/zeo.conf’)

3.4 ZEO Programming Notes

ZEO is written usingasyncore , from the Python standard library. It assumes that some part of the user application
is running anasyncore mainloop. For example, Zope run the loop in a separate thread and ZEO uses that. If your
application does not have a mainloop, ZEO will not process incoming invalidation messages until you make some call
into ZEO. TheConnection.sync method can be used to process pending invalidation messages. You can call it
when you want to make sure theConnection has the most recent version of every object, but you don’t have any
other work for ZEO to do.

3.5 Sample Application: chatter.py

For an example application, we’ll build a little chat application. What’s interesting is that none of the application’s code
deals with network programming at all; instead, an object will hold chat messages, and be magically shared between
all the clients through ZEO. I won’t present the complete script here; it’s included in my ZODB distribution, and you
can download it fromhttp://www.amk.ca/zodb/demos/. Only the interesting portions of the code will be covered here.

The basic data structure is theChatSession object, which provides anadd_message() method that adds a
message, and anew_messages() method that returns a list of new messages that have accumulated since the last
call to new_messages() . Internally,ChatSession maintains a B-tree that uses the time as the key, and stores
the message as the corresponding value.

The constructor forChatSession is pretty simple; it simply creates an attribute containing a B-tree:

class ChatSession(Persistent):
def __init__(self, name):

self.name = name
Internal attribute: _messages holds all the chat messages.
self._messages = BTrees.OOBTree.OOBTree()

add_message() has to add a message to the_messages B-tree. A complication is that it’s possible that some
other client is trying to add a message at the same time; when this happens, the client that commits first wins, and the
second client will get aConflictError exception when it tries to commit. For this application,ConflictError
isn’t serious but simply means that the operation has to be retried; other applications might treat it as a fatal error. The
code usestry...except...else inside awhile loop, breaking out of the loop when the commit works without
raising an exception.

3.4 ZEO Programming Notes 13

def add_message(self, message):
"""Add a message to the channel.
message -- text of the message to be added
"""

while 1:
try:

now = time.time()
self._messages[now] = message
get_transaction().commit()

except ConflictError:
Conflict occurred; this process should pause and
wait for a little bit, then try again.
time.sleep(.2)
pass

else:
No ConflictError exception raised, so break
out of the enclosing while loop.
break

end while

new_messages() introduces the use ofvolatileattributes. Attributes of a persistent object that begin with_v_ are
considered volatile and are never stored in the database.new_messages() needs to store the last time the method
was called, but if the time was stored as a regular attribute, its value would be committed to the database and shared
with all the other clients.new_messages() would then return the new messages accumulated since any other client
callednew_messages() , which isn’t what we want.

def new_messages(self):
"Return new messages."

self._v_last_time is the time of the most recent message
returned to the user of this class.
if not hasattr(self, ’_v_last_time’):

self._v_last_time = 0

new = []
T = self._v_last_time

for T2, message in self._messages.items():
if T2 > T:

new.append(message)
self._v_last_time = T2

return new

This application is interesting because it uses ZEO to easily share a data structure; ZEO and ZODB are being used for
their networking ability, not primarily for their data storage ability. I can foresee many interesting applications using
ZEO in this way:

• With a Tkinter front-end, and a cleverer, more scalable data structure, you could build a shared whiteboard using
the same technique.

• A shared chessboard object would make writing a networked chess game easy.

• You could create a Python class containing a CD’s title and track information. To make a CD database, a read-
only ZEO server could be opened to the world, or an HTTP or XML-RPC interface could be written on top of

14 3 ZEO

the ZODB.

• A program like Quicken could use a ZODB on the local disk to store its data. This avoids the need to write and
maintain specialized I/O code that reads in your objects and writes them out; instead you can concentrate on the
problem domain, writing objects that represent cheques, stock portfolios, or whatever.

4 Transactions and Versioning

4.1 Committing and Aborting

Changes made during a transaction don’t appear in the database until the transaction commits. This is done
by calling thecommit() method of the currentTransaction object, where the latter is obtained from the
get() method of the current transaction manager. If the default thread transaction manager is being used, then
transaction.commit() suffices.

Similarly, a transaction can be explicitly aborted (all changes within the transaction thrown away) by invoking the
abort() method of the currentTransaction object, or simplytransaction.abort() if using the default
thread transaction manager.

Prior to ZODB 3.3, if a commit failed (meaning thecommit() call raised an exception), the transaction was implicitly
aborted and a new transaction was implicitly started. This could be very surprising if the exception was suppressed,
and especially if the failing commit was one in a sequence of subtransaction commits.

So, starting with ZODB 3.3, if a commit fails, all further attempts to commit, join, or register with the transaction
raiseZODB.POSException.TransactionFailedError . You must explicitly start a new transaction then,
either by calling theabort() method of the current transaction, or by calling thebegin() method of the current
transaction’s transaction manager.

4.2 Subtransactions

Subtransactions can be created within a transaction. Each subtransaction can be individually committed and aborted,
but the changes within a subtransaction are not truly committed until the containing transaction is committed.

The primary purpose of subtransactions is to decrease the memory usage of transactions that touch a very large number
of objects. Consider a transaction during which 200,000 objects are modified. All the objects that are modified in a
single transaction have to remain in memory until the transaction is committed, because the ZODB can’t discard them
from the object cache. This can potentially make the memory usage quite large. With subtransactions, a commit can
be be performed at intervals, say, every 10,000 objects. Those 10,000 objects are then written to permanent storage
and can be purged from the cache to free more space.

To commit a subtransaction instead of a full transaction, pass a true value to thecommit() or abort() method of
theTransaction object.

Commit a subtransaction
transaction.commit(True)

Abort a subtransaction
transaction.abort(True)

A new subtransaction is automatically started upon successful committing or aborting the previous subtransaction.

15

4.3 Undoing Changes

Some types ofStorage support undoing a transaction even after it’s been committed. You can tell if this is the case
by calling thesupportsUndo() method of theDB instance, which returns true if the underlying storage supports
undo. Alternatively you can call thesupportsUndo() method on the underlying storage instance.

If a database supports undo, then theundoLog(start, end[, func]) method on theDB instance returns the log
of past transactions, returning transactions between the timesstart andend, measured in seconds from the epoch. If
present,func is a function that acts as a filter on the transactions to be returned; it’s passed a dictionary representing
each transaction, and only transactions for whichfuncreturns true will be included in the list of transactions returned to
the caller ofundoLog() . The dictionary contains keys for various properties of the transaction. The most important
keys are ‘id ’, for the transaction ID, and ‘time ’, for the time at which the transaction was committed.

>>> print storage.undoLog(0, sys.maxint)
[{’description’: ’’,

’id’: ’AzpGEGqU/0QAAAAAAAAGMA’,
’time’: 981126744.98,
’user_name’: ’’},

{’description’: ’’,
’id’: ’AzpGC/hUOKoAAAAAAAAFDQ’,
’time’: 981126478.202,
’user_name’: ’’}
...

To store a description and a user name on a commit, get the current transaction and call thenote(text) method to
store a description, and thesetUser(username) method to store the user name. WhilesetUser() overwrites
the current user name and replaces it with the new value, thenote() method always adds the text to the transaction’s
description, so it can be called several times to log several different changes made in the course of a single transaction.

transaction.get().setUser(’amk’)
transaction.get().note(’Change ownership’)

To undo a transaction, call theDB.undo(id) method, passing it the ID of the transaction to undo. If the transaction
can’t be undone, aZODB.POSException.UndoError exception will be raised, with the message “non-undoable
transaction”. Usually this will happen because later transactions modified the objects affected by the transaction you’re
trying to undo.

After you callundo() you must commit the transaction for the undo to actually be applied.1 There is one glitch in the
undo process. The thread that calls undo may not see the changes to the object until it callsConnection.sync()
or commits another transaction.

4.4 Versions

Warning: Versions should be avoided. They’re going to be deprecated, replaced by better approaches to long-
running transactions.

While many subtransactions can be contained within a single regular transaction, it’s also possible to contain many
regular transactions within a long-running transaction, called a version in ZODB terminology. Inside a version, any
number of transactions can be created and committed or rolled back, but the changes within a version are not made

1There are actually two different ways a storage can implement the undo feature. Most of the storages that ship with ZODB use the transactional
form of undo described in the main text. Some storages may use a non-transactional undo makes changes visible immediately.

16 4 Transactions and Versioning

visible to other connections to the same ZODB.

Not all storages support versions, but you can test for versioning ability by callingsupportsVersions() method
of theDBinstance, which returns true if the underlying storage supports versioning.

A version can be selected when creating theConnection instance using theDB.open([version]) method. The
versionargument must be a string that will be used as the name of the version.

vers_conn = db.open(version=’Working version’)

Transactions can then be committed and aborted using this versioned connection. Other connections that don’t
specify a version, or provide a different version name, will not see changes committed within the version named
‘Working version ’. To commit or abort a version, which will either make the changes visible to all clients or roll
them back, call theDB.commitVersion() or DB.abortVersion() methods. XXX what are the source and
dest arguments for?

The ZODB makes no attempt to reconcile changes between different versions. Instead, the first version which mod-
ifies an object will gain a lock on that object. Attempting to modify the object from a different version or from an
unversioned connection will cause aZODB.POSException.VersionLockError to be raised:

from ZODB.POSException import VersionLockError

try:
transaction.commit()

except VersionLockError, (obj_id, version):
print (’Cannot commit; object %s ’

’locked by version %s’ % (obj_id, version))

The exception provides the ID of the locked object, and the name of the version having a lock on it.

4.5 Multithreaded ZODB Programs

ZODB databases can be accessed from multithreaded Python programs. TheStorage and DB instances can be
shared among several threads, as long as individualConnection instances are created for each thread.

5 Related Modules

The ZODB package includes a number of related modules that provide useful data types such as BTrees.

5.1 persistent.mapping.PersistentMapping

ThePersistentMapping class is a wrapper for mapping objects that will set the dirty bit when the mapping is
modified by setting or deleting a key.

PersistentMapping (container ={})
Create aPersistentMapping object that wraps the mapping objectcontainer. If you don’t specify a value
for container, a regular Python dictionary is used.

PersistentMapping objects support all the same methods as Python dictionaries do.

4.5 Multithreaded ZODB Programs 17

5.2 persistent.list.PersistentList

The PersistentList class is a wrapper for mutable sequence objects, much asPersistentMapping is a
wrapper for mappings.

PersistentList (initlist = [])
Create aPersistentList object that wraps the mutable sequence objectinitlist. If you don’t specify a value
for initlist, a regular Python list is used.

PersistentList objects support all the same methods as Python lists do.

5.3 BTrees Package

When programming with the ZODB, Python dictionaries aren’t always what you need. The most important case is
where you want to store a very large mapping. When a Python dictionary is accessed in a ZODB, the whole dictionary
has to be unpickled and brought into memory. If you’re storing something very large, such as a 100,000-entry user
database, unpickling such a large object will be slow. BTrees are a balanced tree data structure that behave like
a mapping but distribute keys throughout a number of tree nodes. The nodes are stored in sorted order (this has
important consequences – see below). Nodes are then only unpickled and brought into memory as they’re accessed,
so the entire tree doesn’t have to occupy memory (unless you really are touching every single key).

The BTrees package provides a large collection of related data structures. There are variants of the data structures
specialized to integers, which are faster and use less memory. There are four modules that handle the different variants.
The first two letters of the module name specify the types of the keys and values in mappings – O for any object and I
for integer. For example, theBTrees.IOBTree module provides a mapping with integer keys and arbitrary objects
as values.

The four data structures provide by each module are a BTree, a Bucket, a TreeSet, and a Set. The BTree and Bucket
types are mappings and support all the usual mapping methods, e.g.update() andkeys() . The TreeSet and Set
types are similar to mappings but they have no values; they support the methods that make sense for a mapping with
no keys, e.g.keys() but not items() . The Bucket and Set types are the individual building blocks for BTrees
and TreeSets, respectively. A Bucket or Set can be used when you are sure that it will have few elements. If the data
structure will grow large, you should use a BTree or TreeSet. Like Python lists, Buckets and Sets are allocated in one
contiguous piece, and insertions and deletions can take time proportional to the number of existing elements. Also like
Python lists, a Bucket or Set is a single object, and is pickled and unpickled in its entirety. BTrees and TreeSets are
multi-level tree structures with much better (logarithmic) worst-case time bounds, and the tree structure is built out of
multiple objects, which ZODB can load individually as needed.

The four modules are namedOOBTree, IOBTree , OIBTree , andIIBTree . The two letter prefixes are repeated in
the data types names. TheBTrees.OOBTree module defines the following types:OOBTree, OOBucket , OOSet,
andOOTreeSet . Similarly, the other three modules each define their own variants of those four types.

Thekeys() , values() , anditems() methods on BTree and TreeSet types do not materialize a list with all of
the data. Instead, they return lazy sequences that fetch data from the BTree as needed. They also support optional
arguments to specify the minimum and maximum values to return, often called ”range searching”. Because all these
types are stored in sorted order, range searching is very efficient.

Thekeys() , values() , anditems() methods on Bucket and Set types do return lists with all the data. Starting
in ZODB 3.3, there are alsoiterkeys() , itervalues() , anditeritems() methods that return iterators (in
the Python 2.2 sense). Those methods also apply to BTree and TreeSet objects.

A BTree object supports all the methods you would expect of a mapping, with a few extensions that exploit the
fact that the keys are sorted. The example below demonstrates how some of the methods work. The extra methods
are minKey() and maxKey() , which find the minimum and maximum key value subject to an optional bound
argument, andbyValue() , which should probably be ignored (it’s hard to explain exactly what it does, and as a
result it’s almost never used – best to consider it deprecated). The various methods for enumerating keys, values and
items also accept minimum and maximum key arguments (”range search”), and (new in ZODB 3.3) optional Boolean

18 5 Related Modules

arguments to control whether a range search is inclusive or exclusive of the range’s endpoints.

>>> from BTrees.OOBTree import OOBTree
>>> t = OOBTree()
>>> t.update({1: "red", 2: "green", 3: "blue", 4: "spades"})
>>> len(t)
4
>>> t[2]
’green’
>>> s = t.keys() # this is a "lazy" sequence object
>>> s
<OOBTreeItems object at 0x0088AD20>
>>> len(s) # it acts like a Python list
4
>>> s[-2]
3
>>> list(s) # materialize the full list
[1, 2, 3, 4]
>>> list(t.values())
[’red’, ’green’, ’blue’, ’spades’]
>>> list(t.values(1, 2)) # values at keys in 1 to 2 inclusive
[’red’, ’green’]
>>> list(t.values(2)) # values at keys >= 2
[’green’, ’blue’, ’spades’]
>>> list(t.values(min=1, max=4)) # keyword args new in ZODB 3.3
[’red’, ’green’, ’blue’, ’spades’]
>>> list(t.values(min=1, max=4, excludemin=True, excludemax=True))
[’green’, ’blue’]
>>> t.minKey() # smallest key
1
>>> t.minKey(1.5) # smallest key >= 1.5
2
>>> for k in t.keys():
... print k,
1 2 3 4
>>> for k in t: # new in ZODB 3.3
... print k,
1 2 3 4
>>> for pair in t.iteritems(): # new in ZODB 3.3
... print pair,
...
(1, ’red’) (2, ’green’) (3, ’blue’) (4, ’spades’)
>>> t.has_key(4) # returns a true value, but exactly what undefined
2
>>> t.has_key(5)
0
>>> 4 in t # new in ZODB 3.3
True
>>> 5 in t # new in ZODB 3.3
False
>>>

Each of the modules also defines some functions that operate on BTrees –difference() , union() , and
intersection() . The difference() function returns a Bucket, while the other two methods return a Set.
If the keys are integers, then the module also definesmultiunion() . If the values are integers, then the mod-
ule also definesweightedIntersection() andweightedUnion() . The function doc strings describe each
function briefly.

5.3 BTrees Package 19

BTrees/Interfaces.py defines the operations, and is the official documentation. Note that the interfaces don’t
define the concrete types returned by most operations, and you shouldn’t rely on the concrete types that happen to be
returned: stick to operations guaranteed by the interface. In particular, note that the interfaces don’t specify anything
about comparison behavior, and so nothing about it is guaranteed. In ZODB 3.3, for example, two BTrees happen to
use Python’s default object comparison, which amounts to comparing the (arbitrary but fixed) memory addresses of
the BTrees. This may or may not be true in future releases. If the interfaces don’t specify a behavior, then whether that
behavior appears to work, and exactly happens if it does appear to work, are undefined and should not be relied on.

Total Ordering and Persistence

The BTree-based data structures differ from Python dicts in several fundamental ways. One of the most important is
that while dicts require that keys support hash codes and equality comparison, the BTree-based structures don’t use
hash codes and require a total ordering on keys.

Total ordering means three things:

1. Reflexive. For eachx, x == x is true.

2. Trichotomy. For eachx andy, exactly one ofx < y, x == y, andx > y is true.

3. Transitivity. Wheneverx <= y andy <= z, it’s also true thatx <= z.

The default comparison functions for most objects that come with Python satisfy these rules, with some crucial cau-
tions explained later. Complex numbers are an example of an object whose default comparison function does not
satisfy these rules: complex numbers only support== and!= comparisons, and raise an exception if you try to com-
pare them in any other way. They don’t satisfy the trichotomy rule, and must not be used as keys in BTree-based
data structures (although note that complex numbers can be used as keys in Python dicts, which do not require a total
ordering).

Examples of objects that are wholly safe to use as keys in BTree-based structures include ints, longs, floats, 8-bit
strings, Unicode strings, and tuples composed (possibly recursively) of objects of wholly safe types.

It’s important to realize that even if two types satisfy the rules on their own, mixing objects of those types may not. For
example, 8-bit strings and Unicode strings both supply total orderings, but mixing the two loses trichotomy; e.g.,’x’
< chr(255) andu’x’ == ’x’ , but trying to comparechr(255) to u’x’ raises an exception. Partly for this
reason (another is given later), it can be dangerous to use keys with multiple types in a single BTree-based structure.
Don’t try to do that, and you don’t have to worry about it.

Another potential problem is mutability: when a key is inserted in a BTree-based structure, it must retain the same
order relative to the other keys over time. This is easy to run afoul of if you use mutable objects as keys. For example,
lists supply a total ordering, and then

>>> L1, L2, L3 = [1], [2], [3]
>>> from BTrees.OOBTree import OOSet
>>> s = OOSet((L2, L3, L1)) # this is fine, so far
>>> list(s.keys()) # note that the lists are in sorted order
[[1], [2], [3]]
>>> s.has_key([3]) # and [3] is in the set
1
>>> L2[0] = 5 # horrible -- the set is insane now
>>> s.has_key([3]) # for example, it’s insane this way
0
>>> s
OOSet([[1], [5], [3]])
>>>

20 5 Related Modules

Key lookup relies on that the keys remain in sorted order (an efficient form of binary search is used). By mutating key
L2 after inserting it, we destroyed the invariant that the OOSet is sorted. As a result, all future operations on this set
are unpredictable.

A subtler variant of this problem arises due to persistence: by default, Python does several kinds of comparison by
comparing the memory addresses of two objects. Because Python never moves an object in memory, this does supply
a usable (albeit arbitrary) total ordering across the life of a program run (an object’s memory address doesn’t change).
But if objects compared in this way are used as keys of a BTree-based structure that’s stored in a database, when the
objects are loaded from the database again they will almost certainly wind up at different memory addresses. There’s
no guarantee then that if key K1 had a memory address smaller than the memory address of key K2 at the time K1 and
K2 were inserted in a BTree, K1’s address will also be smaller than K2’s when that BTree is loaded from a database
later. The result will be an insane BTree, where various operations do and don’t work as expected, seemingly at
random.

Now each of the types identified above as ”wholly safe to use” never compares two instances of that type by memory
address, so there’s nothing to worry about here if you use keys of those types. The most common mistake is to use
keys that are instances of a user-defined class that doesn’t supply its own__cmp__() method. Python compares such
instances by memory address. This is fine if such instances are used as keys in temporary BTree-based structures used
only in a single program run. It can be disastrous if that BTree-based structure is stored to a database, though.

>>> class C:
... pass
...
>>> a, b = C(), C()
>>> print a < b # this may print 0 if you try it
1
>>> del a, b
>>> a, b = C(), C()
>>> print a < b # and this may print 0 or 1
0
>>>

That example illustrates that comparison of instances of classes that don’t define__cmp__() yields arbitrary results
(but consistent results within a single program run).

Another problem occurs with instances of classes that do define__cmp__() , but define it incorrectly. It’s possible
but rare for a custom__cmp__() implementation to violate one of the three required formal properties directly. It’s
more common for it to ”fall back” to address-based comparison by mistake. For example,

class Mine:
def __cmp__(self, other):

if other.__class__ is Mine:
return cmp(self.data, other.data)

else:
return cmp(self.data, other)

It’s quite possible there that theelse clause allows a result to be computed based on memory address. The bug won’t
show up until a BTree-based structure uses objects of classMine as keys, and also objects of other types as keys, and
the structure is loaded from a database, and a sequence of comparisons happens to execute theelse clause in a case
where the relative order of object memory addresses happened to change.

This is as difficult to track down as it sounds, so best to stay far away from the possibility.

You’ll stay out of trouble by follwing these rules, violating them only with great care:

5.3 BTrees Package 21

1. Use objects of simple immutable types as keys in BTree-based data structures.

2. Within a single BTree-based data structure, use objects of a single type as keys. Don’t use multiple key types in
a single structure.

3. If you want to use class instances as keys, and there’s any possibility that the structure may be stored in a
database, it’s crucial that the class define a__cmp__() method, and that the method is carefully implemented.

Any part of a comparison implementation that relies (explicitly or implicitly) on an address-based comparison
result will eventually cause serious failure.

4. Do not usePersistent objects as keys, or objects of a subclass ofPersistent .

That last item may be surprising. It stems from details of how conflict resolution is implemented: the states passed to
conflict resolution do not materialize persistent subobjects (if a persistent object P is a key in a BTree, then P is a sub-
object of the bucket containing P). Instead, if an object O references a persistent subobject P directly, and O is involved
in a conflict, the states passed to conflict resolution contain an instance of an internalPersistentReference stub
class everywhere O references P. TwoPersistentReference instances compare equal if and only if they ”repre-
sent” the same persistent object; when they’re not equal, they compare by memory address, and, as explained before,
memory-based comparison must never happen in a sane persistent BTree. Note that it doesn’t help in this case if your
Persistent subclass defines a sane__cmp__() method: conflict resolution doesn’t know about your class, and
so also doesn’t know about its__cmp__() method. It only sees instances of the internalPersistentReference
stub class.

Iteration and Mutation

As with a Python dictionary or list, you should not mutate a BTree-based data structure while iterating over it, except
that it’s fine to replace the value associated with an existing key while iterating. You won’t create internal damage in
the structure if you try to remove, or add new keys, while iterating, but the results are undefined and unpredictable. A
weak attempt is made to raiseRuntimeError if the size of a BTree-based structure changes while iterating, but it
doesn’t catch most such cases, and is also unreliable. Example:

>>> from BTrees.IIBTree import *
>>> s = IISet(range(10))
>>> list(s)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> for i in s: # the output is undefined
... print i,
... s.remove(i)
0 2 4 6 8
Traceback (most recent call last):

File "<stdin>", line 1, in ?
RuntimeError: the bucket being iterated changed size
>>> list(s) # this output is also undefined
[1, 3, 5, 7, 9]
>>>

Also as with Python dictionaries and lists, the safe and predictable way to mutate a BTree-based structure while
iterating over it is to iterate over a copy of the keys. Example:

22 5 Related Modules

>>> from BTrees.IIBTree import *
>>> s = IISet(range(10))
>>> for i in list(s.keys()): # this is well defined
... print i,
... s.remove(i)
0 1 2 3 4 5 6 7 8 9
>>> list(s)
[]
>>>

BTree Diagnostic Tools

A BTree (or TreeSet) is a complex data structure, really a graph of variable-size nodes, connected in multiple ways
via three distinct kinds of C pointers. There are some tools available to help check internal consistency of a BTree as
a whole.

Most generally useful is theBTrees.check module. Thecheck.check() function examines a BTree (or Bucket,
Set, or TreeSet) for value-based consistency, such as that the keys are in strictly increasing order. See the function
docstring for details. Thecheck.display() function displays the internal structure of a BTree.

BTrees and TreeSets also have a_check() method. This verifies that the (possibly many) internal pointers in a
BTree or TreeSet are mutually consistent, and raisesAssertionError if they’re not.

If a check.check() or _check() call fails, it may point to a bug in the implementation of BTrees or conflict
resolution, or may point to database corruption.

Repairing a damaged BTree is usually best done by making a copy of it. For example, ifself.datais bound to a
corrupted IOBTree,

self.data = IOBTree(self.data)

usually suffices. If object identity needs to be preserved,

acopy = IOBTree(self.data)
self.data.clear()
self.data.update(acopy)

does the same, but leavesself.databound to the same object.

A Resources

Introduction to the Zope Object Database, by Jim Fulton:
Goes into much greater detail, explaining advanced uses of the ZODB and how it’s actually implemented. A definitive
reference, and highly recommended.
http://www.python.org/workshops/2000-01/proceedings/papers/fulton/zodb3.html

Persistent Programing with ZODB, by Jeremy Hylton and Barry Warsaw:
Slides for a tutorial presented at the 10th Python conference. Covers much of the same ground as this guide, with more
details in some areas and less in others.
http://www.zope.org/Members/bwarsaw/ipc10-slides

23

B GNU Free Documentation License

Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other written document “free” in the sense of freedom:
to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially
or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work,
while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But
this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

B.1 Applicability and Definitions

This License applies to any manual or other work that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. The “Document”, below, refers to any such manual or work. Any member
of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with
the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or
political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sec-
tions, in the notice that says that the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification
is available to the general public, whose contents can be viewed and edited directly and straightforwardly with generic
text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent file format whose markup has been designed to
thwart or discourage subsequent modification by readers is not Transparent. A copy that is not “Transparent” is called
“Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LATEX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML designed

24 B GNU Free Documentation License

for human modification. Opaque formats include PostScript, PDF, proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any
title page as such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

B.2 Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that
this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

B.3 Copying in Quantity

If you publish printed copies of the Document numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as
fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a publicly-
accessible computer-network location containing a complete Transparent copy of the Document, free of added mate-
rial, which the general network-using public has access to download anonymously at no charge using public-standard
network protocols. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

B.4 Modifications

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

• Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may

B.2 Verbatim Copying 25

use the same title as a previous version if the original publisher of that version gives permission.

• List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors of the Document (all of its principal
authors, if it has less than five).

• State on the Title page the name of the publisher of the Modified Version, as the publisher.

• Preserve all the copyright notices of the Document.

• Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

• Include, immediately after the copyright notices, a license notice giving the public permission to use the Modi-
fied Version under the terms of this License, in the form shown in the Addendum below.

• Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Docu-
ment’s license notice.

• Include an unaltered copy of this License.

• Preserve the section entitled “History”, and its title, and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled “History”
in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title
Page, then add an item describing the Modified Version as stated in the previous sentence.

• Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

• In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s title, and preserve in the
section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

• Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

• Delete any section entitled “Endorsements”. Such a section may not be included in the Modified Version.

• Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Ver-
sion by various parties – for example, statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you
are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity
for or to assert or imply endorsement of any Modified Version.

26 B GNU Free Documentation License

B.5 Combining Documents

You may combine the Document with other documents released under this License, under the terms defined in section
4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list
of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various original documents, forming
one section entitled “History”; likewise combine any sections entitled “Acknowledgements”, and any sections entitled
“Dedications”. You must delete all sections entitled “Endorsements.”

B.6 Collections of Documents

You may make a collection consisting of the Document and other documents released under this License, and replace
the individual copies of this License in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

B.7 Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on
a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the Document,
provided no compilation copyright is claimed for the compilation. Such a compilation is called an “aggregate”, and
this License does not apply to the other self-contained works thus compiled with the Document, on account of their
being thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less
than one quarter of the entire aggregate, the Document’s Cover Texts may be placed on covers that surround only the
Document within the aggregate. Otherwise they must appear on covers around the whole aggregate.

B.8 Translation

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms
of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License provided that you also include the original English version of
this License. In case of a disagreement between the translation and the original English version of this License, the
original English version will prevail.

B.9 Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License.
Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full compliance.

B.5 Combining Documents 27

B.10 Future Revisions of This Licence

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns. Seehttp://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License ”or any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this docu-
ment under the terms of the GNU Free Documentation License, Version 1.1 or any later version published
by the Free Software Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST. A copy of the license is included in
the section entitled “GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which ones are invariant. If
you have no Front-Cover Texts, write “no Front-Cover Texts” instead of “Front-Cover Texts being LIST”; likewise for
Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free
software.

28 B GNU Free Documentation License

	1 Introduction
	1.1 What is the ZODB?
	1.2 OODBs vs. Relational DBs
	1.3 What is ZEO?
	1.4 About this guide
	1.5 Acknowledgements

	2 ZODB Programming
	2.1 Installing ZODB
	Requirements
	Installing the Packages

	2.2 How ZODB Works
	2.3 Opening a ZODB
	2.4 Using a ZODB Configuration File
	2.5 Writing a Persistent Class
	2.6 Rules for Writing Persistent Classes
	Modifying Mutable Objects
	unhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip unhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip getattrunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip unhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip , unhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip unhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip delattrunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip unhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip , and unhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip unhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip setattrunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip unhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip
	unhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip unhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip delunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip unhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip methods

	2.7 Writing Persistent Classes
	Changing Instance Attributes

	3 ZEO
	3.1 How ZEO Works
	3.2 Installing ZEO
	Requirements
	Running a server

	3.3 Testing the ZEO Installation
	3.4 ZEO Programming Notes
	3.5 Sample Application: chatter.py

	4 Transactions and Versioning
	4.1 Committing and Aborting
	4.2 Subtransactions
	4.3 Undoing Changes
	4.4 Versions
	4.5 Multithreaded ZODB Programs

	5 Related Modules
	5.1 persistent.mapping.PersistentMapping
	5.2 persistent.list.PersistentList
	5.3 BTrees Package
	Total Ordering and Persistence
	Iteration and Mutation
	BTree Diagnostic Tools

	A Resources
	B GNU Free Documentation License
	B.1 Applicability and Definitions
	B.2 Verbatim Copying
	B.3 Copying in Quantity
	B.4 Modifications
	B.5 Combining Documents
	B.6 Collections of Documents
	B.7 Aggregation With Independent Works
	B.8 Translation
	B.9 Termination
	B.10 Future Revisions of This Licence

