
Anomaly detection with cfenvd
Edition 2.1.17 for version 2.1.17

Mark Burgess
Faculty of Engineering, Oslo University College, Norway

Copyright c© 2001 Mark Burgess
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the section entitled "GNU General
Public License" is included exactly as in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the section entitled
"GNU General Public License" may be included in a translation approved by the author
instead of in the original English.
This manual corresponds to CFENGINE Edition 2.1.17 for version 2.1.17 as last updated
6 August 2005.

Chapter 1: Overview 1

1 Overview

One of the aims of cfengine version 2, in combination with our research efforts at Oslo
University College, is to develop a real computer immune system, based on the detection
of ‘sicknesses’ or anomalies in the behaviour of the system, not merely based on a policy
template. Such a system would be far more dynamical and be able to change in response to
changing external conditions. This work is in its early stages, but you can take advantage
of it straight away, with a minimum of effort. This additional manual aims at getting you
started, so that you can monitor systems, and learn about their behaviour, without having
to watch control panels, or time-series traces.

1.1 Intrusion detection

What is an intrusion or an attempted intrusion? This can be difficult to define. If someone
tries to login at root once? If someone tries to login at root fifty times? Port scanning,
SATAN or ISS scan? Someone trying a known security hole?

The aim of an intrusion detection system is to detect break-ins in progress so that
something can be done about them. Obviously the first thing one should worry about is
how difficult it is to break in in the first place. If we have done the job of securing data
well enough, why are we worried that anyone will be able to get in?

Intrusion detection is a form of fault-diagnosis. Faults (in a security system) are not
supposed to happen, but the fact is that they do happen. As with all fault diagnosis
systems, IDS give the wrong answers from time to time. Because it is so difficult to define
what intrusion actually means in a generic sense (it’s political) intrusion detection systems
tend to err on the side of caution and report many false positives, i.e. false alarms.

This is a very difficult problem to do in real time. What does real-time mean? Some
attacks are stealthy and occur over many hours or days. How can we make a prompt
notification about such attempts? The intrusion detection will have to be fast to detect
quick break-ins, but have a long memory in order to see slow ones (like the thief digging a
tunnel into the bank with a tea-spoon).

How will we be alerted or notified about intrusions? By alarm on the screen? By E-mail
or pager alert? What if the attacker first knocks out E-mail or the pager link?

User privacy is also a problem. If an intrusion detection system examines everything
going on within the system, looking for suspicious behaviour, is that an intrusion of privacy?
What if humans never see the data, but only the warnings? Where do we draw the line
between justified and unjustified surveillance? Law enforcement agencies have been arguing
about that one for years!

1.2 Cryptographic checksums

Change detection is about monitoring whether files and other aspects of a system change.
The idea was originally advanced in the program Tripwire, which collected a "snaphot"
of the system in the form of a database of file checksums (hashes) and permissions and
rechecked the system against this database at regular intervals. Tripwire examines only
files, and looks for any change at all. If a legitimate change is made to the system, it
responds to this as a potential threat. Databases must then be altered, or rebuilt.

2 Anomaly detection with cfenvd and cfenvgraph

Cfengine adopted part of Tripwire’s idea. It collects MD5 hash data for specified files.
Its model for checking permissions is somewhat different however. Cfengine expects systems
to change dynamically, so it allows users to define a policy for allowed change. It can also
check for processes, not merely files. Integrity checks on files whose contents are supposed
to be static are a good way to detect tampering with the system, from whatever source.
Running MD5 or SHA1 checksums of files regularly provides us with a way of determining
even the smallest changes to file contents. Here is an excerpt from a cfengine configuration
program that would check the /usr/local filesystem for file changes. Note that it excludes
files such as log files that are supposed to change:

control:

actionsequence = (files)

###

files:

/usr/local o=root,bin,man action=warnall mode=o-w r=inf checksum=md5

ignore=logs exclude=*.log

1.3 An environment detector: cfenvd

The ‘cfenvd’ program serves two purposes: as an anomaly detection engine and as a source
of ‘entropy’ for generating random numbers, such as for encryption keys. Although it is not
a compulsory part of cfengine, it is highly recommended to run this daemon. It requires few
resources and poses no vulnerability to the system. It will play an increasingly important
role in future developments.

In cfengine 2.x, additional classes are automatically evaluated based on the state of the
host, in relation to earlier times. This is accomplished by the additional ‘cfenvd’ daemon,
which continually updates a database of system averages and variances, which characterize
“normal” behaviour. The state of the system is examined and compared to the database,
and the state is classified in terms of the current level of activity, as compared to an average
of equivalent earlier times. e.g.

RootProcs_low_dev2

netbiosssn_in_low_dev2

smtp_out_high_anomalous

www_in_high_dev3

ftp_in_high_microanomaly

The first of these tells us that the number of root processes is two standard deviations
below the average of past behaviour, which might be fortuitous, or might signify a problem,
such as a crashed server. The WWW item tells us that the number of incoming connections
is three standard deviations above average. The smtp item tells us that outgoing smtp
connections are more than three standard deviations above average, perhaps signifying
a mail flood. The setting of these classes is transparent to the user, but the additional
information is only visible to the privileged owner of the cfengine work-directory, where the
data are cached.

The term ‘microanomaly’ is used to describe two standard deviations above normal,
when the delta of the change is less than the arbitray value of 5. This is a small number,
and anomalies of these kinds are generally noise.

Chapter 1: Overview 3

Simply specifying statistical number anomalies is not sufficient to provide well-honed
anomaly characteristics. Cfengine tries to organize the information surrounding an anomaly
first in terms of statistical significance and then only later in terms of event characteristics.
There are too many events in which the numerical values exceed thresholds determined by
an arbitrary policy. Other criteria are needed to pin down which anomalies are interesting
and which are not. As a second level of policy filtering, cfengine provides a measure of
the entropy of the source IP addresses of the measured data. A low entropy value means
that most of the events came from only a few (or one) IP addresses. A high entropy value
implies that the events were spread over many IP sources. These conditions are described
by classes of the form:

entropy_www_in_high

entropy_smtp_in_low

Thus, for example, in the first case the class will be set if incoming traffic at the peak
event of the last data sample was spread evenly over all the incoming addresses. Such an
event indicates that the resource usage is not due to a single source (e.g. an attacker from a
single location) but is evenly spread — perhaps just a coincidental anomaly. In the second
case, the low entropy smtp traffic must come from one or two addresses and is more likely
to be spam or an attack of some kind. These classes can be combined with the specific
anomaly thresholds (see example below).

Active incoming ports are also registered as “pin-portnumber”, but this is mainly an
experimental feature for future research. The resulting class list, obtained from exploring
the environment of the system, and after parsing a configuration, looks something like this:

host% cfagent -p -v

[snip]

Defined Classes = (any Thursday Hr14 Min24 Min20_25

Day19 July Yr2001 solaris examplehost 32_bit sunos_5_7

sunos_sun4u sunos_sun4u_5_7 sparc solaris2_7 129_0_0

129_0_0_10 loghost OnTheHour peaktime DayTime

examplehost_example_org longjob Setup_SSH_OK y MailHub

percent_60 RootProcs_normal_dev2 nfsd_out_low_dev2

pin-1554 pin-80 pin-21 pin-6011 pin-5308 pin-139

pin-983 pin-10)

[snip]

It is not yet known how the extra environment classes will be used in practice. One
obvious possibility is to limit certain heavy-weight operations (such as file tree scans) when
the host is very busy, and to increase the probability of their occurrence when the host is
lightly loaded. See the example in section 11. It remains to be seen how users will respond
to these possibilities.

1.4 Anomaly research

There is no system available in the world today which can claim to detect and classify the
functioning state of a computer system. Cfengine does not attempt to provide a “product”
solution to this problem; rather it incorporates a framework, based on the current state
of knowledge, for continuing research into this issue. In version 2.x of cfengine, an extra
daemon ‘cfenvd’ is used to collect statistical data about the recent history of each host

4 Anomaly detection with cfenvd and cfenvgraph

(approximately the past two months), and classify it in a way that can be utilized by the
cfengine agent.

The daemon may simply be started, with no arguments:
cfenvd

and it proceeds to collect data and work autonomously, without further supervision. The
cf-environment daemon is meant be trivial to use. The current long-term data recorded by
the daemon are: number of users, number of root processes, number of non-root processes,
percentage disk full for root disk, number of incoming and outgoing sockets for netbiosns,
netbiosdgm, netbiosssn, irc, cfengine, nfsd, smtp, www, ftp, ssh and telnet. These data
have been studied previously, and their behaviour is relatively well understood. In future
versions, it is expected to extend this repertoire, as more research is done.

The use of the daemon will not be reliable until about six to eight weeks after installing
and running it, since a suitable training period is required to build up enough data for
stable characterization. The daemon automatically adapts to the changing conditions, but
has a built-in inertia which prevents anomalous signals from being given too much credence.
Persistent changes will gradually change the ‘normal state’ of the host over an interval of a
few weeks. Unlike some systems, cfengine’s training period never ends. It regards normal
behaviour as a relative concept, which has more to do with local stability than global
constancy.

The final size of the database is approximately 2MB. Measurements are taken every five
minutes (approximately). This interval is based on auto-correlation times measured for
networked hosts in practice.

Cfenvd sets a number of classes in cfengine which describe the current state of the
host in relation to its recent history. The classes describe whether a parameter is above
or below its average value, and how far from the average the current value is, in units
of the standard-deviation (see above). This information could be utilized to arrange for
particularly resource-intensive maintenance to be delayed until the expected activity was
low.

1.5 cfenvgraph
The ‘cfenvgraph’ command can use used to dump a graph of averages for visual inspection
of the normal state database. The format of the file is

t,y_1,y_2,y_3...

which can be viewed using ‘gnuplot’ or ‘xgmr’ or other graphical plotting program. This
would allow the policy-maker to see what is likely to be a good time for such work (say
06:00 hours), and then use this time for the job, unless an anomalous load is detected.

The cfenvgraph command is used to extract data from the database used by the cfenvd
environment daemon.

cfenvgraph -f filename.db [-r -T -t -s -e]

The command normally generates two files with format
t, y_1, y_2, y_3, y_4...

in a sub-directory of the current directory ‘cfenvgraphs-snapshot’ (or
‘cfenvgraphs-’TIMESTAMP if ‘-T’ is used).

The files are called

Chapter 1: Overview 5

cfenv-average

cfenv-stddev

and contain, respectively, the weighted average values of all the recorded data and the
square-root of the weighted variances with respect to the averages. Data are weighted in
such a way that older values are gradually deprecated, becoming irrelevant after about two
months.

Normally the vertical scale of each graph is scaled so that each line has a maximum
value of 1 and a minimum value of 0, this allows all the lines to be seen in maximum detail.
However, this makes it difficult to see the absolute values of the lines. With the ‘-n’ option,
no scaling is performed and true values are plotted.

The complete data span a one-week period, and the daily rhythm of the system may
normally be viewed as a number of peaks, one per day.

The options are:

‘--help (-h)’
List command options

‘--file (-f)’
Specifiy file to plot.

‘--titles (-t)’
If the ‘-t’ option is given, comments are generated at the start of the file
which describe the columns. These are in a format understood by ‘vvgraph’ as
title/label data.

‘--timestamps (-T)’
If the ‘-T’ option is given, the output filenames are time-stamped with the
current time, in order to give a unique name.

‘--resolution (-r)’
If the ‘-r’ option is given then high resolution data are generated (five minute
resolution), otherwise data are averaged over periods of one hour to generate
simpler and smoother graphs.

‘--separate (-s)’
If the ‘-s’ option is given, cfenvgraph generates separate files for each metric,
in the format

t,y,dy

where dy is the height of a vertical error-bar. This set of graphs combines the av-
erage with the standard-deviation. (Note that the error bars show the standard-
deviation, and not the standard error of the mean i.e. stddev/sqrt(N)); the
latter has no obvious meaning here. If ‘-e’ is specified, then error bars are
omitted.

‘--no-error-bars (-e)’
No error bars are plotted.

‘--no-scaling (-n)’
The graphs are not scaled, so that (min,max) is mapped onto the interval (0,1).

Note that the values printed for sockets always look higher than they should for highly
active services. This is because even those sockets which are in CLOSE WAIT are counted.

6 Anomaly detection with cfenvd and cfenvgraph

This is the correct way to determine a normal state based on the recent past. It is a local
averaging performed by the kernel. If one counts only those connections which are currently
active, one gets a distorted view of activity with a 5-minute sample rate. To measure more
often than this would place unacceptably high load on the system.

Graphs may be viewed in ‘vvgraph’, ‘xmgr’ (used in the pictures above) or ‘gnuplot’,
or other graphical viewer. These graphs are not meant for continuous viewing. The data
are averages, not time-series.

For example, with gnuplot
host$ cfenvgraph -s

host$ gnuplot

gnuplot> plot "www-in.cfenv" with errorbars

gnuplot> plot "www-in.cfenv" with lines

The new version of xmgr is called xmgrace. It can be invoked as follows:
host$ xmgrace -nxy cfenv-averages

host$ xmgrace rootprocs.cfenv

host$ xmgrace -settype xydy rootprocs.cfenv

host$ xmgrace -settype xydy rootprocs.cfenv -hardcopy -hdevice JPEG

If you see the error "Strings are not allowed", it might be because some "nan" values
have come into the text file.

1.6 Fluctuation profiles

Any model of fluctuating values is based on the idea that the changing signal has a basic
separation of signal and noise. The variability of the signal is generally characterized by
a probability distribution. Some tools and many papers assume that the distribution of
fluctuations is Gaussian. This is almost never the case in real computer systems.

Hurst exponent measures the degree of stability in the signal, in the following sense....

1.7 Starting with anomaly detection

Try importing the following file:

###

#

BEGIN cf.environ

#

###

#

Just a test for responses to measured anomalies

#

classes:

anomaly_hosts = (myhost1 myhost2)

###

alerts:

nfsd_in_high_dev2::

Chapter 1: Overview 7

"High NFS server access rate 2dev at $(host)/$(env_time)

current value $(value_nfsd_in) av $(average_nfsd_in) pm

$(stddev_nfsd_in)"

ShowState(incoming.nfs)

ROOT PROCS

anomaly_hosts.RootProcs_high_dev2::

"RootProc anomaly high 2 dev on $(host)/$(env_time) current value

$(value_rootprocs) av $(average_rootprocs) pm $(stddev_rootprocs)"

ShowState(procs)

USER PROCS

anomaly_hosts.UserProcs_high_dev2::

"UserProc anomaly high 2 dev on $(host)/$(env_time) current

value $(value_userprocs) av $(average_userprocs) pm $(stddev_userprocs)"

ShowState(procs)

anomaly_hosts.UserProcs_high_anomaly::

"UserProc anomaly high 3 dev!! on $(host)/$(env_time)"

ShowState(procs)

WWW IN

This happens too often

anomaly_hosts.www_in_high_dev2::

#

entropy_www_in_high.anomaly_hosts.www_in_high_anomaly::

"HIGH ENTROPY Incoming www anomaly high anomaly dev!!

on $(host)/$(env_time) - current value $(value_www_in)

av $(average_www_in) pm $(stddev_www_in)"

ShowState(incoming.www)

entropy_www_in_low.anomaly_hosts.www_in_high_anomaly::

"LOW ENTROPY Incoming www anomaly high anomaly dev!! on

$(host)/$(env_time) - current value $(value_www_in) av

$(average_www_in) pm $(stddev_www_in)"

ShowState(incoming.www)

SMTP IN

8 Anomaly detection with cfenvd and cfenvgraph

entropy_smtp_in_high.anomaly_hosts.smtp_in_high_dev2::

"HIGH ENTROPY Incoming smtp anomaly high 2 dev on $(host)/$(env_time)"

entropy_smtp_in_high.anomaly_hosts.smtp_in_high_anomaly::

"HIGH ENTROPY Incoming smtp anomaly high anomaly !! on $(host)/$(env_time)"

entropy_smtp_in_low.anomaly_hosts.smtp_in_high_dev1::

"LOW ENTROPY Incoming smtp anomaly high 1 dev on $(host)/$(env_time)

current value $(value_smtp_in) av $(average_smtp_in) pm $(stddev_smtp_in)"

ShowState(incoming.smtp)

entropy_smtp_in_low.anomaly_hosts.smtp_in_high_dev2::

"LOW ENTROPY Incoming smtp anomaly high 2 dev on $(host)/$(env_time)

current value $(value_smtp_in) av $(average_smtp_in) pm $(stddev_smtp_in)"

ShowState(incoming.smtp)

entropy_smtp_in_low.anomaly_hosts.smtp_in_high_anomaly::

"LOW ENTROPY Incoming smtp anomaly high anomaly !! on $(host)/$(env_time)

current value $(value_smtp_in) av $(average_smtp_in) pm $(stddev_smtp_in)"

ShowState(incoming.smtp)

SMTP OUT

anomaly_hosts.smtp_out_high_dev2::

"Outgoing smtp anomaly high 2 dev on $(host)/$(env_time) current value

$(value_smtp_out) av $(average_smtp_out) pm $(stddev_smtp_out)"

ShowState(outgoing.smtp)

anomaly_hosts.smtp_out_high_anomaly::

"Outgoing smtp anomaly high anomaly dev!! on $(host)/$(env_time)

current value $(value_smtp_out) av $(average_smtp_out) pm $(stddev_smtp_out)"

ShowState(outgoing.smtp)

SAMBA

anomaly_hosts.netbiosssn_in_high_dev2::

"SAMBA access high 2 on $(host)/$(env_time) current value

$(value_netbiosssn_in) av $(average_netbiosssn_in) pm $(stddev_netbiosssn_in)"

Chapter 1: Overview 9

ShowState(incoming.netbiosssn)

###

###

#

END cf.environ

#

###

The output generated by this file shows the current value of the quantity and a summary
of the highest values during the last 40 minutes:

cf:cube: LOW ENTROPY Incoming www anomaly high anomaly dev!! on cube/Fri Feb 20 19:57:23 2004 -

current value 53 av 9.9 pm 16.1

cf:cube: ---

cf:cube: In the last 40 minutes, the peak state was:

cf:cube: (1) tcp 0 0 128.39.74.16:80 157.158.24.40:4049 TIME_WAIT

cf:cube: (2) tcp 0 0 128.39.74.16:80 157.158.24.40:3796 TIME_WAIT

cf:cube: (3) tcp 0 0 128.39.74.16:80 157.158.24.40:3544 TIME_WAIT

cf:cube: (4) tcp 0 0 128.39.74.16:80 157.158.24.40:4063 TIME_WAIT

cf:cube: (5) tcp 0 0 128.39.74.16:80 157.158.24.40:4035 TIME_WAIT

cf:cube: (6) tcp 0 0 128.39.74.16:80 157.158.24.40:3782 TIME_WAIT

cf:cube: (7) tcp 0 0 128.39.74.16:80 157.158.24.40:3530 TIME_WAIT

cf:cube: (8) tcp 0 0 128.39.74.16:80 157.158.24.40:3824 TIME_WAIT

cf:cube: (9) tcp 0 0 128.39.74.16:80 157.158.24.40:3572 TIME_WAIT

cf:cube: (10) tcp 0 0 128.39.74.16:80 157.158.24.40:4091 TIME_WAIT

cf:cube: (11) tcp 0 0 128.39.74.16:80 157.158.24.40:3839 TIME_WAIT

cf:cube: (12) tcp 0 0 128.39.74.16:80 157.158.24.40:3810 TIME_WAIT

cf:cube: (13) tcp 0 0 128.39.74.16:80 157.158.24.40:4077 TIME_WAIT

cf:cube: (14) tcp 0 0 128.39.74.16:80 157.158.24.40:3993 TIME_WAIT

cf:cube: (15) tcp 0 0 128.39.74.16:80 157.158.24.40:3740 TIME_WAIT

cf:cube: (16) tcp 0 0 128.39.74.16:80 157.158.24.40:3712 TIME_WAIT

cf:cube: (17) tcp 0 0 128.39.74.16:80 157.158.24.40:3979 TIME_WAIT

cf:cube: (18) tcp 0 0 128.39.74.16:80 157.158.24.40:3726 TIME_WAIT

cf:cube: (19) tcp 0 0 128.39.74.16:80 157.158.24.40:4021 TIME_WAIT

cf:cube: (20) tcp 0 0 128.39.74.16:80 157.158.24.40:3768 TIME_WAIT

cf:cube: (21) tcp 0 0 128.39.74.16:80 157.158.24.40:3516 TIME_WAIT

cf:cube: (22) tcp 0 0 128.39.74.16:80 80.203.17.11:11487 ESTABLISHED

cf:cube: (23) tcp 0 0 128.39.74.16:80 157.158.24.40:4007 TIME_WAIT

cf:cube: (24) tcp 0 0 128.39.74.16:80 157.158.24.40:3754 TIME_WAIT

cf:cube: (25) tcp 0 0 128.39.74.16:80 66.196.72.28:6545 TIME_WAIT

cf:cube: (26) tcp 0 0 128.39.74.16:80 157.158.24.40:3923 TIME_WAIT

cf:cube: (27) tcp 0 0 128.39.74.16:80 157.158.24.40:3670 TIME_WAIT

cf:cube: (28) tcp 0 0 128.39.74.16:80 80.202.77.107:1567 TIME_WAIT

cf:cube: (29) tcp 0 0 128.39.74.16:80 157.158.24.40:4189 TIME_WAIT

cf:cube: (30) tcp 0 0 128.39.74.16:80 157.158.24.40:3909 TIME_WAIT

cf:cube: (31) tcp 0 0 128.39.74.16:80 157.158.24.40:3656 TIME_WAIT

cf:cube: (32) tcp 0 0 128.39.74.16:80 157.158.24.40:3698 TIME_WAIT

cf:cube: (33) tcp 0 0 128.39.74.16:80 157.158.24.40:3965 TIME_WAIT

cf:cube: (34) tcp 0 0 128.39.74.16:80 80.202.77.107:1568 TIME_WAIT

cf:cube: (35) tcp 0 0 128.39.74.16:80 157.158.24.40:3937 TIME_WAIT

cf:cube: (36) tcp 0 0 128.39.74.16:80 157.158.24.40:3684 TIME_WAIT

cf:cube: (37) tcp 0 0 128.39.74.16:80 157.158.24.40:4203 TIME_WAIT

cf:cube: (38) tcp 0 0 128.39.74.16:80 157.158.24.40:3951 TIME_WAIT

cf:cube: (39) tcp 0 0 128.39.74.16:80 157.158.24.40:3600 TIME_WAIT

10 Anomaly detection with cfenvd and cfenvgraph

cf:cube: (40) tcp 0 0 128.39.74.16:80 157.158.24.40:4119 TIME_WAIT

cf:cube: (41) tcp 0 0 128.39.74.16:80 157.158.24.40:3867 TIME_WAIT

cf:cube: (42) tcp 0 0 128.39.74.16:80 157.158.24.40:3614 TIME_WAIT

cf:cube: (43) tcp 0 0 128.39.74.16:80 157.158.24.40:3586 TIME_WAIT

cf:cube: (44) tcp 0 0 128.39.74.16:80 157.158.24.40:4105 TIME_WAIT

cf:cube: (45) tcp 0 0 128.39.74.16:80 157.158.24.40:3853 TIME_WAIT

cf:cube: (46) tcp 0 0 128.39.74.16:80 157.158.24.40:4147 TIME_WAIT

cf:cube: (47) tcp 0 0 128.39.74.16:80 157.158.24.40:3895 TIME_WAIT

cf:cube: (48) tcp 0 0 128.39.74.16:80 157.158.24.40:3642 TIME_WAIT

cf:cube: (49) tcp 0 0 128.39.74.16:80 80.213.238.106:4318 FIN_WAIT2

cf:cube: (50) tcp 0 0 128.39.74.16:80 80.213.238.106:4319 TIME_WAIT

cf:cube: (51) tcp 0 0 128.39.74.16:80 157.158.24.40:4133 TIME_WAIT

cf:cube: (52) tcp 0 0 128.39.74.16:80 157.158.24.40:3881 TIME_WAIT

cf:cube: (53) tcp 0 0 128.39.74.16:80 157.158.24.40:3628 TIME_WAIT

{

DNS key: 157.158.24.40 = arm.iele.polsl.gliwice.pl (47/53)

DNS key: 80.203.17.11 = 11.80-203-17.nextgentel.com (1/53)

DNS key: 66.196.72.28 = j3118.inktomisearch.com (1/53)

DNS key: 80.202.77.107 = 107.80-202-77.nextgentel.com (2/53)

DNS key: 80.213.238.106 = ti100710a080-3690.bb.online.no (2/53)

-

Frequency: 157.158.24.40 |*** (47/53)

Frequency: 80.203.17.11 |* (1/53)

Frequency: 66.196.72.28 |* (1/53)

Frequency: 80.202.77.107 |** (2/53)

Frequency: 80.213.238.106 |** (2/53)

}

-

Scaled entropy of addresses = 12.7 %

(Entropy = 0 for single source, 100 for flatly distributed source)

-

cf:cube: ---

cf:cube: State of incoming.www peaked at Fri Feb 20 19:57:23 2004

Another example of a low entropy smtp (possible distributed spam operation in progress):

cf:nexus: HIGH ENTROPY Incoming smtp anomaly high 2 dev on nexus/Sat Aug 6 14:29:58 2005

cf:nexus: --

cf:nexus: In the last 40 minutes, the peak state was q = 25:

{

DNS key: 81.218.96.62 = bzq-218-96-62.red.bezeqint.net (1/25)

DNS key: 85.152.128.208 = cm-85-152-128-208.telecable.es (1/25)

DNS key: 82.40.141.102 = 82-40-141-102.cable.ubr04.uddi.blueyonder.co.uk (1/25)

DNS key: 68.189.49.33 = 68-189-49-33.dhcp.rdng.ca.charter.com (1/25)

DNS key: 61.47.218.167 = 61.47.218.167 (1/25)

DNS key: 211.170.184.229 = 211.170.184.229 (2/25)

DNS key: 64.65.134.186 = static-64-65-134-186.dsl.pdx.eschelon.com (1/25)

DNS key: 61.9.82.105 = 61.9.82.105.mozcom.net (1/25)

DNS key: 219.234.19.166 = 219.234.19.166 (1/25)

DNS key: 68.60.199.206 = pcp07641774pcs.calhun01.ga.comcast.net (1/25)

DNS key: 82.216.163.149 = ip-149.net-82-216-163.suresnes3.rev.numericable.fr (1/25)

DNS key: 84.9.43.170 = host-84-9-43-170.bulldogdsl.com (1/25)

DNS key: 84.59.55.171 = dsl-084-059-055-171.arcor-ip.net (1/25)

DNS key: 200.104.102.141 = pc-141-102-104-200.cm.vtr.net (1/25)

DNS key: 85.152.225.126 = cm-85-152-225-126.telecable.es (1/25)

Chapter 1: Overview 11

DNS key: 218.81.136.17 = 218.81.136.17 (1/25)

DNS key: 83.84.225.251 = 5354E1FB.cable.casema.nl (1/25)

DNS key: 60.198.145.92 = 60-198-145-92.static.tfn.net.tw (1/25)

DNS key: 61.53.185.218 = 61.53.185.218 (1/25)

DNS key: 81.53.86.235 = ANantes-154-1-63-235.w81-53.abo.wanadoo.fr (1/25)

DNS key: 58.142.251.14 = 58.142.251.14 (1/25)

DNS key: 220.234.173.3 = 220.234.173.3 (1/25)

DNS key: 219.251.118.195 = 219.251.118.195 (1/25)

DNS key: 68.44.158.165 = pcp04364785pcs.glstrt01.nj.comcast.net (1/25)

-

Frequency: 211.170.184.229 |** (2/25)

Frequency: 68.44.158.165 |* (1/25)

Frequency: 219.251.118.195 |* (1/25)

Frequency: 220.234.173.3 |* (1/25)

Frequency: 58.142.251.14 |* (1/25)

Frequency: 81.53.86.235 |* (1/25)

Frequency: 61.53.185.218 |* (1/25)

Frequency: 60.198.145.92 |* (1/25)

Frequency: 83.84.225.251 |* (1/25)

Frequency: 218.81.136.17 |* (1/25)

Frequency: 85.152.225.126 |* (1/25)

Frequency: 200.104.102.141 |* (1/25)

Frequency: 84.59.55.171 |* (1/25)

Frequency: 84.9.43.170 |* (1/25)

Frequency: 82.216.163.149 |* (1/25)

Frequency: 68.60.199.206 |* (1/25)

Frequency: 219.234.19.166 |* (1/25)

Frequency: 61.9.82.105 |* (1/25)

Frequency: 64.65.134.186 |* (1/25)

Frequency: 61.47.218.167 |* (1/25)

Frequency: 68.189.49.33 |* (1/25)

Frequency: 82.40.141.102 |* (1/25)

Frequency: 85.152.128.208 |* (1/25)

Frequency: 81.218.96.62 |* (1/25)

}

-

Scaled entropy of addresses = 4.0 %

(Entropy = 0 for single source, 100 for flatly distributed source)

-

cf:nexus: --

cf:nexus: State of incoming.smtp peaked at Sat Aug 6 14:29:58 2005

cf:nexus: HIGH ENTROPY Incoming smtp anomaly high anomaly !! on nexus/Sat Aug 6 14:29:58 2005

12 Anomaly detection with cfenvd and cfenvgraph

Chapter 2: Anomaly response 13

2 Anomaly response

2.1 Anomaly Classes

When cfengine detects an anomaly, it classified the current statistical state of the system
into a number of classes.

Cfengine classifies anomalies by whether the currently measured state of the system is
higher or lower than the average for the current time of week. The amount of deviation is
based on an estimate of the ‘standard deviation’. The precise definition of the average and
standard deviations is complex, and is discussed in the paper "M. Burgess, Probabilistic
anomaly detection in distributed computer networks", (submitted to Science of Computer
Programming, and available on the web).

The list of measured attributes is currently fixed to the following:
The first part of the string is from the list:

Users

RootProcs

UserProcs

DiskFree

LoadAvg

Socket counts of network services distinguish between incoming and outgoing sockets (to
a service or from a client).

netbiosns
Registers traffic to/from port 137.

netbiosdgm
Registers traffic to/from port 138.

netbiosssn
Registers traffic to/from port 139.

irc Registers traffic to/from port 194.

cfengine Registers traffic to/from port 5308.

nfsd Registers traffic to/from port 2049.

smtp Registers traffic to/from port 25.

www Registers traffic to/from port 80.

ftp Registers traffic to/from port 21.

ssh Registers traffic to/from port 22.

wwws Registers traffic to/from port 443.

If you have tcpdump program installed in a standard location, then cfenvd -T collects
data about the network flows to your host.

icmp Traffic belonging to the ICMP protocol (ping etc).

dns Traffic to port 53, the Domain Name Service (usually a special case of UDP).

udp Miscellaneous UDP traffic that is not related to DNS.

14 Anomaly detection with cfenvd and cfenvgraph

tcpsyn Registers TCP packets with SYN flag set.

tcpack Registers TCP packets with ACK flag set.

tcpfin Registers TCP packers with FIN flag set.

misc Registers all other packets, not covered above.

When it has accurate knowledge of statistics, ‘cfenvd’ classifies the current state into 3
levels:

normal means that the current level is less than one standard deviation above normal.

dev1 means that the current level is at least one standard deviation about the average.

dev2 means that the current level is at least two standard deviations about the
average.

anomaly means that the current level is more than 3 standard deviations above average.

Each of these charaxterizations assumes that there are good data available. The ‘cfenvd’
evaluates its data and decides whether or not the data are too noisy to be really useful. If
the data are too noisy but the level appears to be more than two standard deviations above
aaverage, then the category microanomaly is used.

Here are some example classes:
UserProcs_high_dev2

UserProcs_low_dev1

www_in_high_anomaly

smtp_out_high_dev2

2.2 Entropy

Entropy is a statistical characterization of the distribution digits in an arrival process over
long times. You can learn more about entropy in Mark Burgess, Analytical Network and
System Administration.

For network related data, cfengine evaluates the entropy in the currently measured sam-
ple of measurements, with respect to the different IP addresses of the sources. You can use
these to predicate the appearance of an anomaly, e.g.

entropy_www_in_high

entropy_smtp_in_low

For example, if you only want to know when a huge amount of SMTP traffic arrives
from a single IP source, you would label your anomaly response:

entropy_smtp_in_low.smtp_in_high_anomaly::

since the entropy is low when the majority of traffic comes from only a small number of
IP addresses (e.g. one). The entropy is maximal when activity comes equally from several
different sources.

2.3 Log utilities
How shall we respond to an anomalous event? Alerts can be channelled directly to syslog:

SysLog(LOG_ERR,"Test syslog message")

Software that processes logs can thus be interfaced with via the syslog interface.

Chapter 2: Anomaly response 15

2.4 Persistent alerts

DEFCON 1
Another application for alerts is to pass signals from one cfengine to another by per-

sistent, shared memory. For example, suppose a short-lived anomaly event triggers a class
that relates to a security alert. The event class might be too short-lived to be followed up by
cfagent in full. One could thus set a long term class that would trigger up several follow-up
checks. A persistent class could also be used to exclude an operation for an interval of time.

Persistent class memory can be added through a system alert functions to give timer
behaviour. For example, consider setting a class that acts like a non-resettable timer. It is
defined for exactly 10 minutes before expiring.

SetState("preserved_class",10,Preserve)

Or to set a class that acts as a resettable timer. It is defined for 60 minutes unless the
SetState call is called again to extend its lifetime.

SetState(non_preserved_class,60,Reset)

Existing persistent classes can be deleted with:

UnsetState(myclass)

16 Anomaly detection with cfenvd and cfenvgraph

Chapter 2: Variable Index 17

Variable Index

(Index is nonexistent)

18 Anomaly detection with cfenvd and cfenvgraph

Chapter 2: Concept Index 19

Concept Index

A
anomaly . 14

D
dev1 . 14
dev2 . 14

E
Encryption keys . 2
Entropy . 3, 14
Entropy source . 2

M

Micro-anomaly . 2
microanomaly . 14
Microanomaly . 2

N
normal . 14

R
Random numbers . 2

X
xmgrace . 6

20 Anomaly detection with cfenvd and cfenvgraph

Chapter 2: FAQ Index 21

FAQ Index

(Index is nonexistent)

22 Anomaly detection with cfenvd and cfenvgraph

i

Table of Contents

1 Overview . 1
1.1 Intrusion detection . 1
1.2 Cryptographic checksums . 1
1.3 An environment detector: cfenvd . 2
1.4 Anomaly research . 3
1.5 cfenvgraph . 4
1.6 Fluctuation profiles . 6
1.7 Starting with anomaly detection . 6

2 Anomaly response . 13
2.1 Anomaly Classes . 13
2.2 Entropy . 14
2.3 Log utilities . 14
2.4 Persistent alerts . 15

Variable Index . 17

Concept Index . 19

FAQ Index . 21

ii Anomaly detection with cfenvd and cfenvgraph

	Overview
	Intrusion detection
	Cryptographic checksums
	An environment detector: cfenvd
	Anomaly research
	cfenvgraph
	Fluctuation profiles
	Starting with anomaly detection

	Anomaly response
	Anomaly Classes
	Entropy
	Log utilities
	Persistent alerts

	Variable Index
	Concept Index
	FAQ Index

