
Introduction to argtable-2.x
An ANSI C library for parsing GNU style command line arguments

Stewart Heitmann
sheitmann@users.sourceforge.net

Parsing a program's command line arguments has always been a distraction from the main programming task at
hand. The argtable library simplifies the job by enabling the programmer to define the command line options
directly in the source code as a static array of structs and then pass that array to argtable library functions
which parse the command line accordingly. The values extracted from the comand line are deposited directly
into user-defined program variables where they can be accessed by the main program. Argtable can also
generate descriptions of the command line syntax from that same array for display as on-line help. The software
is freely available under the terms of the GNU Library General Public License (LGPL).

myprog -abc --scalar=7 --verbose -o myfile <file> [<file>]

Argtable uses GNUgetopt to perform the actual parsing so it is 100% GNU compatable. It supports both GNU
short options (as in -abc, -o myfile) GNU long options (as in –scalar=7, –verbose), as well as untagged
arguments (as in <file> [<file>]). It does not support non-GNU command line formats, such as DOS /X /Y /Z
style options.

How it works

Argtable provides a set of arg_xxx structs, one for each type of argument (literal, integer, double, string,
filename, etc) that it supports and each struct is capable of handling multiple occurrences of that argument on
the command line. Furthermore, each option can be given alternative short option (ie: -c) or long option (ie: --
scalar) forms that can be used interchangeably. It fact, each option can even take multiple alternative short or
long options, or both. Options can also be defined to have no option tag at all (ie: <file>) in which case they are
identifed by their position on the command line (tagged options can appear anywhere on the command line).

To define a program's the command line options the user creates an arg_xxx struct for each type of argument
required and collates them into an array which we call the argument table. The order of the structs in the
argument table defines the order in which the command line options are expected, although the parsing order
really only matters for untagged options. The argument table itself is just an array of void pointers, and by
convention each arg_xxx struct has a known arg_hdr struct as its first entry that the argtable functions use to
identify the structure.

By way of example, let us consider the arg_int struct which is used for command line options taking integer
arguments, as in –scalar=7.

struct arg_int
{
struct arg_hdr hdr;
int count;
int *ival;
};

The struct's first data member, hdr, holds the “private” data used by the argtable library functions. It contains
things like the argument's tag string and so on. Access to this data is openly permitted, so it is not strictly
private, but in general the programmer need not do so and can just ignore it. The count and ival member
variables are more interesting, ival points to an array of integers that hold the values extracted from the
command line and count gives the number of values held in the array. The storage for the ival array is
allocated when the arg_int is constructed. This must done with one of the dedicated arg_int constructor
functions:

struct arg_int* arg_int0(const char* shortopts,
const char* longopts,
const char* datatype,
const char* glossary);

struct arg_int* arg_int1(const char* shortopts,
const char* longopts,
const char* datatype,
const char *glossary);

struct arg_int* arg_intn(const char* shortopts,
const char* longopts,
const char *datatype,
int mincount,
int maxcount,
const char *glossary);

All the argtable constructor functions work in the same manner; they allocate a block of memory that contains
an arg_xxx struct at its head followed by storage for the local data for that structure, in this case the contents of
the ival array. For this reason, you should never manually instantiate any arg_xxx struct yourself. Always use
the constructor functions provided to allocate the structure and deallocate it using free when you are finished.

The three forms of the arg_int constructors represent the three most common uses of command line
arguments: arg_int0 is for options that appear zero-or-once on the command line, arg_int1 is for options that
appear exactly once on the command line, and arg_intn is for options that appear any number of times (within
a given range). Thus arg_int0 and arg_int1 will both allocate one element to the ival array of the resulting
structure, whereas arg_intn will allocate sufficient space for ival to store up to maxcount elements. The
former are just specialised forms of the latter and are provided for convenience. Notice the arg_xxx0, arg_xxx1,
and arg_xxxn naming convention applies likewise to all argtable constructor functions.

Continuing with our arg_int example, the following code will construct a integer type option of the form --
scalar=<n> that must appear on the command line between 3 and 5 times inclusive.

struct arg_int *s;
s = arg_intn(NULL,”scalar”,”<n>”,3,5,“foo value”);

Upon completion s will point to a memory block containing the arg_int struct followed by the ival array of 5
elements, or NULL if the memory allocation failed. Presuming the allocation succedded, its memory map may
look something like:

struct arg_int *s = 0xbffff600;
0xbffff600: struct arg_int
0xbffff600: {
0xbffff600: struct arg_hdr hdr;
0xbffff87c: int count = 0;
0xbffff880: int *ival = 0xbffff888;
0xbffff888: };
0xbffff888: ival[0]
0xbffff88c: ival[1]
0xbffff890: ival[2]
0xbffff894: ival[3]
0xbffff898: ival[4]

Note that the s->count variable is initialised to zero as it represents the number of valid values that are stored
in the s->ival array after parsing the command line. The size of the s->ival array is instead given by s-
>hdr.maxcount.

In this example we omitted a short option form by passing a NULL shortopts parameter to the constructor
function. If instead we passed shortops as, say, “k”

s = arg_intn(“k”,”scalar”,”<n>”,3,5,“foo value”);

then the resulting structure would be the same but the option could be accepted on the command line as either
-k<n> or –scalar=<n> equivalently. Indeed, we can go even further and define multiple alternative forms for
both the short and long options. Alternative short options are given a string of single characters, whereas long
options are given as a comma separated string. For instance,

s = arg_intn(“kKx”,”scalar,foo”,”<n>”,3,5,“foo value”);

will accept any of the following alternative forms on the command line: -k<n> -K<n> -x<n> --scalar=<n> --
foo=<n>

Apart from arg_int, other arg_xxx structs of interest are:

struct arg_lit
{
struct arg_hdr hdr;
int count;
};

For literal options (ie: no arguments).
eg: -v, --verbose

struct arg_dbl
{
struct arg_hdr hdr;
int count;
double *dval;
};

For options taking real arguments.
eg: -x1.0e-6, --pi=3.1415

struct arg_str
{
struct arg_hdr hdr;
int count;
const char **sval;
};

For options taking string arguments.
eg: -Dmacro, --title=”hello world”

struct arg_rex
{
struct arg_hdr hdr;
int count;
const char **sval;
};

For options taking string arguments that must
match some regular expression template.
eg: -Dmacro, --title=”hello world”

struct arg_file
{
struct arg_hdr hdr;
int count;
const char **filename;
const char **basename;
const char **extension;
};

For options taking filename arguments.
This option returns not only the filename
itself, but separates out its basename and
extension as well.
eg: -o myfile, --infile=memo.txt

struct arg_date
{
struct arg_hdr hdr;
const char *format;
int count;
struct tm *tm_val;
};

For options taking date/time arguments.
eg: 12/31/04, -d 1982-11-28,
--time 23:59

The argument table

Having constructed our arg_xxx structs we collate them into an argument table, as in the following example
which defines the command line arguments:[-a] [-b] [-c] [--scalar=<n>] [-v|--verbose] [-o myfile]
<file> [<file>]

struct arg_lit *a = arg_lit0(“a”, NULL, ”the -a option”);
struct arg_lit *b = arg_lit0(“b”, NULL, ”the -b option”);
struct arg_lit *c = arg_lit0(“c”, NULL, ”the -c option”);
struct arg_int *scal = arg_int0(NULL, ”scalar”,”<n>”, ”foo value”);
struct arg_lit *verb = arg_lit0(“v”, ”verbose, ”verbose output”);
struct arg_file *o = arg_file0(“o”, NULL,”myfile”, ”output file”);
struct arg_file *file = arg_filen(NULL,NULL,”<file>”,1,2, ”input files”);
struct arg_end *end = arg_end(20);
void *argtable[] = {a,b,c,scal,verb,o,file,end};

The “-a”, “-b”, “-c” and “-v|--verbose” options do not take argument values so we use arg_lit structs for them.
We use the arg_lit0 form of the constructor function because these particular options only appear on the
command line once or not at all.

The “--scalar=<n>” option takes an integer argument so its uses an arg_int struct. It too appears either once
or not at all so we use the arg_int0 constructor function.

The “-o myfile” and “<file>” options both refer to filenames so we use the arg_file struct for them. We use the
arg_file0 constructor function for the former because it appears either once or not at all, but the latter must
appear either once or twice so we use the more general arg_filen constructor function for that. Notice that it
is an untagged option as it does not take either short or long option strings.

The arg_end struct is a special one as it doesn't represent any command line option. Primarily it marks the end
of the argtable array, but it also stores any parser errors encountered when processing the command line
arguments. The integer parameter passed to the arg_end constructor is the maximum number of errors that it
will store, in this case 20, any further errors are discarded and replaced with the single error message “too
many errors”.

We will see how to use arg_end in error reporting soon but first we must ensure that all of the argument table
entries were successfully allocated by their constructor functions. If they were'nt then there will be NULL
entries in the argtable array which will cause trouble. We can use the arg_nullcheck function to check argtable
for NULL entries in one step. It returns non-zero if any NULL entries were encountered up until the end of the
table as marked by the arg_end structure.

if (arg_nullcheck(argtable) != 0)
printf("error: insufficient memory\n");

Presuming that went well, we may now initate any default values we wish to assign our optional arguments. We
simply write our desired values directly into the arg_xxx structs knowing that argtable will only overwrite them
if valid command line values are given in their place. Here we set the default values of 3 and “-” for the repeat
and outfile arguments respectively.

repeat->ival[0]=3;
outfile->filename[0]=”-”;

Be aware that argtable does not require we initialise any default values, it is simply more convenient for our
program if we pre-load defaults prior to parsing rather than retro-fit defaults to missing values later. However,
you may prefer the latter.

Parsing the command line

Now our argument table is complete, we can use it to parse the command line arguments. We use the
arg_parse function to do that, and it returns the number of parse errors it encountered.

nerrors = arg_parse(argc,argv,argtable);

If there were no errors then we have successfully parsed the command line and we can proceed with our main
processing task, using the values to be found in our program's arg_xxx structs.

if (nerrors==0)
{
int i;
printf(“-a = %d\n”, a->count);
printf(“-b = %d\n”, b->count);
printf(“-c = %d\n”, c->count);
printf(“--verbose = %d\n”, verb->count);
if (scal->count > 0)
printf(“--scalar=%d\n”,scal->ival[0]);
if (o->count > 0)
printf(“-o %s\n”,o->filename[0]);
for (i=0; i<file->count; i++)
printf(“file[%d]=%s\n”,i,file->filename[i]);
};

Error processing

If the arg_parse function reported errors then we need to display them as arg_parse does not do so itself. As
mentioned earlier, the arg_parse function stores the errors it encounters in the argument table's arg_end
struct. We dont need to know the internal details of the arg_end struct, we simply call the arg_print_errors
function to print those errors in the order they were encountered.

void arg_print_errors(FILE* fp, struct arg_end* end, const char* progname);

We pass the function a pointer to the argument table's arg_end struct as well as the name of the program which
is prependend to each error message. The program name can be NULL if not required.

If (nerrors > 0)
arg_print_errors(stdout,end,”myprog”);

This example illustrates the results of invoking our example program with incorrect command line options:

$./myprog -x -y -z --scalar=hello --verby
myprog: invalid option "-x"
myprog: invalid option "-y"
myprog: invalid option "-z"
myprog: invalid argument "hello" to option --scalar=<n>
myprog: invalid option "--verby"
myprog: missing option <file>

The reason arg_parse function doesnt print error messages is so it can be called multiple times to parse the
command line with alternative argument tables without having extraneous error messages displayed
prematurely. Thus we may define separate argument tables for those programs that have mutually exclusive
sets of command line options, trying each argument table in turn until we find a successful candidate. Should all
argument tables fail to satisfy then we can choose to print the error messages from all of them, or perhaps only
show the errors form the one that matched the closest. In any event, we control which messages are displayed.

Displaying the option syntax

If you want your program to display on-line help you can use the arg_print_syntax function to display the
exact command line syntax as derived from an argument table. There are actually two forms of the function:

void arg_print_syntax(FILE *fp, void **argtable, const char *suffix);
void arg_print_syntaxv(FILE *fp, void **argtable, const char *suffix);

The latter displays a more verbose form of output, and is distinguished by the “v” at the end of the function
name. Both functions display the syntax for an entire argument table, with the suffix parameter provided as a
convenience for appending newline characters or any other string onto the end of the output. In the verbose
form, each argument table entry displays its alternative short and long options separated by the “|” character
followed by its datatype string. For instance,

arg_int0(“kKx”,”scalar,foo”,”<n>”,“foo value”);

will be displayed in verbose form as “[-k|-K|-x|--scalar|--foo=<n>]”. Whereas the standard form
abbreviates the output by displaying only the first option of each argument table entry, as in “[-k <n>]”. The
standard form also concatentates all short options in the argument table into a single option string at the head
of the display in standard GNU style (eg: -a -b -c is displayed as -abc). The argument table from our previous
example would thus be displayed in standard form as:

[-abcv] [--scalar=<n>] [-o myfile] <file> [<file>]

and in verbose form as:

[-a] [-b] [-c] [--scalar=<n>] [-o myfile] [-v|--verbose] <file> [<file>]

Notice that optional entries are automatically enclosed in square brackets whereas mandatory arguments are
not. Futhermore arguments that accept multiple instances are displayed once per instance, as in “<file>
[<file>]”. This occurs up to a maximum of three instances after which the repetition is replaced by an elipisis,
as in “[<file>]...”.

The arg_print_syntax functions safely ignore NULL short and long option strings, whereas a NULL datatype
string is automatically replaced by the default datatype for that arg_xxx struct. The default datatype can be
suppressed by using an empty datatype string instead of a NULL.

Displaying the option glossary

The individual entries of the argument table can be displayed in a glossary layout by the arg_print_glossary
function. It displays the full syntax of each argument table entry followed by each table entry's glossary string –
the glossary string is the last parameter passed to the arg_xxx constructor functions. Table entries with NULL
glossary strings are not displayed.

void arg_print_glossary(FILE *fp, void **argtable, const char *format);

The format string passed to the arg_print_glossary function is actually a printf style format string. It should
contain exactly two “%s” format parameters, the first is used to control the printf format of the option's syntax
string and the second is for the argument's glossary string. A typical format string would be " %-25s %s\n".
The format string allows fine control over the display formatting but demands dilligence as any unexpected
parameters in it will cause unpredictable results. Here is the results of calling arg_print_glossary on our
earlier example argument table:

-a
-b
-c
--scalar=<n>
-v, --verbose
-o myfile
<file>

the -a option
the -b option
the -c option
foo value
verbose option
output file
input files

Sometimes you will wish to add extra lines of text to the glossary, or even put your own text into the syntax
string generated by arg_print_syntax. You can add newline characters to your argument table strings if you
wish, but it soon gets ugly. A better way is to add arg_rem structs to your argument table. They are dummy
argument table entries in the sense that they do not alter the argument parsing but their datatype and glossary
strings do appear in the output generated by the arg_print_syntax and arg_print_glossary functions. The
name arg_rem is for “remark” and is inspired by the REM statement used in the BASIC language.

Cleaning up

At the end of our program we need to deallocate the memory allocated to each of our arg_xxx structs. We could
do that by calling free on each of them individually, but the arg_freetable function can do it for us more
conveniently.

arg_freetable(argtable,sizeof(argtable)/sizeof(argtable[0]));

It will step through an argument table and call free on each of its elements on our behalf. Note the second
parameter, sizeof(argtable)/sizeof(argtable[0]), merely represents the number of elements in our
argtable array. Upon completion of this function, all of the argtable array entries will have been set to NULL.

Hint: declaring global arg_xxx variables

ANSI C wont allow the the arg_xxx constructor functions to be placed in the global namespace, so if you wish to
make your arg_xxx structs global you must initialiase them elsewhere. Here's a programming trick for using
global arg_xxx structs while stull declaring your argtable statically.

#include <argtable2.h>

/* global arg_xxx structs */
struct arg_lit *a, *b, *c, *verb;

struct arg_int *scal;

struct arg_file *o, *file;

struct arg_end *end;

int main(int argc, char **argv)

{

/* the global arg_xxx structs are initialised within the argtable */
void *argtable[] ={

a = arg_lit0(“a”, NULL, ”the -a option”),

b = arg_lit0(“b”, NULL, ”the -b option”),

c = arg_lit0(“c”, NULL, ”the -c option”),

scal = arg_int0(NULL, ”scalar”,”<n>”, ”foo value”),

verb = arg_lit0(“v”, ”verbose, ”verbose output”),

o = arg_file0(“o”, NULL,”myfile”, ”output file”),

file = arg_filen(NULL,NULL,”<file>”,1,2, ”input files”),

end = arg_end(20),

};

...

return 0;

};

See the ls.c program included in the argtable distribution for an example of using this declaration style.

Compiling programs with argtable library

All source code that uses the argtable library must include the “argtable2.h” header function and link against
the argtable2 library. A typical unix makefile for doing this would be:

CC = gcc
CFLAGS = -I/usr/local/include -Wall -ansi
LDFLAGS = -L/usr/local/lib
LDLIBS = -largtable2

myprog.o: myprog.c
$(CC) -c $(CFLAGS) -o myprog.o myprog.c

myprog: myprog.o
$(CC) $(LDFLAGS) myprog.o -o myprog $(LDLIBS)

Though the last two make rules are redundant as the default make rules suffice, so we could simplify the entire
Makefile to just:

CC = gcc
CFLAGS = -I/usr/local/include -Wall -ansi
LDFLAGS = -L/usr/local/lib
LDLIBS = -largtable2

myprog: myprog.o

Lastly, you may add the “-static” switch to CFLAGS if you would prefer to link your application statically rather
than use dynamically loaded runtime libraries.

CFLAGS = -I/usr/local/include -Wall -ansi -static

Example code

The argtable distribution comes with example programs that implement complete GNU compatable command
line options for several common unix commands. See the argtable-2.x/example/ directory for the source code of
the following programs:

echo [-neE] [--help] [--version] [STRING]...

ls [-aAbBcCdDfFgGhHiklLmnNopqQrRsStuUvxX1] [--author] [--block-size=SIZE] [--color=[WHEN]] [--format=WORD]
[--full-time] [--si] [--dereference-command-line-symlink-to-dir] [--indicator-style=WORD] [-I PATTERN] [--
show-control-chars] [--quoting-style=WORD] [--sort=WORD] [--time=WORD] [--time-style=STYLE] [-T COLS] [-w
COLS] [--help] [--version] [FILE]...

mv [-bfiuv] [--backup=[CONTROL]] [--reply={yes,no,query}] [--strip-trailing-slashes] [-S SUFFIX] [--target-
directory=DIRECTORY] [--help] [--version] SOURCE [SOURCE]... DEST|DIRECTORY

rm [-dfirv] [--help] [--version] <file> [<file>]...

uname [-asnrvmpio] [--help] [--version]

